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Coalescence and instability of copropagating nonlinear waves
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An arbitrary number of light waves that collinearly propagate in a Kerr cubic medium is investigated in the
framework ofn (n=2) coupled nonlinear Schdinger equations. Depending on their initial separation dis-
tance and their power, the waves are shown to either disperse, collapse individually, or still attract each other
to form a central lobe that may blow up at a finite time. General results, including the fundamental relations
that govern the wave centroids and their mean square radii, are established for two and more light pulses. Their
approximate evolution is described by means of a variational approach applied to two Gaussian beams and
theoretical arguments detailing the attractor associated with the self-attraction of beams are also given. Fur-
thermore, an instability criterion for coupled bound states is derived using perturbation theory. It is shown that
coupled stationary-wave solutions are unstable when the space dimension number is higher than 2, while their
corresponding ground states are stable at lower dimension. Finally, the competition between the modulational
instability of coupled waves and their natural tendency to amalgamate into one self-focusing structure is
discussed[S1063-651X98)13910-7

PACS numbsgs): 42.65.Tg, 52.35.Mw, 03.40.Kf, 42.65.Jx

I. INTRODUCTION side, analogous behaviors based on nonlinearities promoting
wave collapse were revealed by numerical integrations of the
For more than two decades, the question of optimizing theubic Schrdinger equation[9] and analytical arguments
propagation of light beams in nonlinear bulk media hasclearing them up were displayed[ih0], when several beam-
raised an increasing interest connected with the recent devdfts compose the solution to one NLS equation. In particular,
opment of high-power laser sourcgs?2]. Among the vari- ~according to their initial powers and separation distance, two
ous nonlinear effects induced by the response of a nonlinedf-phase Gaussian beamlets symmetrically located at differ-
medium, the self-trapping and self-focusing of intense beamgnt centroids were shown to spread out, self-focus without
have been widely investigated since the 1960s. Self-trappe@utual correlation, or fuse into a central self-focusing lobe.
beams evolving in three spatial dimensions are well knowrn this configuration, the coalescence mechanism is then ini-
to be unstable within an ideal Kerr material and to break ugiated when the two beamlets are mutually separated by a
into a train of three-dimension&D) solitary waveg3,4]. In distance less than a critical value depending on their indi-
the absence of saturation, the resulting filaments self-focugidual power and when the latter is lying betweéy;/4 and
until they collapse at a finite propagation distance, wherNcrit- HereNg=4 denotes the threshold power for self-
their individual power exceeds a critical value such that thdocusing of one Gaussian beam with a nonlinearity coeffi-
nonlinear effects continuously dominate over the natural discient equal to unity. This critical thresholl=4m is
persion of the wavg5]. This critical power is usually com- slightly larger than the well-known self-focusing powsg
puted in the framework of the paraxial cubic mod8], = =11.68 that a solution to the 2D NLS equation must initially
based on the 2D nonlinear Scdinger (NLS) equation with ~ exceed to collapse. Furthermore, by virtue of the conserva-
two transverse dimensions and one longitudinal dimensiotion of power and the Hamiltonian, two initially separated
for the propagation axis. The dimension numBenere cor- beamlets with amr-phase difference were shown to never
responds to the one conventionally associated with the trangmalgamate into a single structure. These different behaviors
verse plane D=2), where wave diffraction takes place. were supported by numerical simulations.
Nevertheless, it can include a third dimensidb=3) to Among the numerous physical processes dealing with the
account for the variations of the wave field with respect to aself-focusing of coupled light waves, we can here mention
retarded time variable, when the group velocity dispersiorthe self-excitation of waves with different polarizations in a
(GVD) of the wave is retained. In a physical medium, oncenonlinear medium. From the pioneering works by Berkhoer
self-focusing is initiated, the local wave intensity starts toand Zakharo\J11] and Manako\12], it is well established
increase and collapse is arrested by saturation of the Kethat, unlike circularly polarized beams, a wave having an
response, which allows for the formation of stationary soli-arbitrarily varying polarization decomposes into two waves
tary waves. In the presence of anomalous GVD, these solWith opposite circular polarizations in an isotropic nongyro-
tary waves form robust “optical bullets[6], which consist tropic medium. Under the assumption that the material’s re-
of self-focused beamlets relaxing asymptotically to stabldractive index changes linearly with the optical intengitye
steady states. so-called Kerr effegtf the slowly varying complex envelopes
Recently, the topic of interacting light waves opened aof the resulting waves obey in that case two distinct, nonlin-
wide area of investigations: For instance, attraction and fuearly coupled nonlinear Schdimger equations in the form
sion of in-phase optical bright spatial solitons were displayed -
numerically[7] and experimentally8]. From the theoretical 10,E1+V2E 1+ (A Eal?+ AnEx|DE;=0, (D)

1063-651X/98/56)/660620)/$15.00 PRE 58 6606 © 1998 The American Physical Society



PRE 58 COALESCENCE AND INSTABILITY OF . .. 6607

@) with birefringence[15,16. In the presence of FWM terms,
families of soliton solutions can be constructed for birefrin-
m%ent optical fibers by taking radiation processes into account,
Wwhich was shown to qualitatively influence the soliton solu-
. e ~ R N fons [17]. Coupled wave equations describing comparable
with electric field E=E;Cr+E,C_ (Cr and €, denote the phenomena were also derived for monomode step-index op-
complex unit vectors corresponding to orthogonal polarizaticg| fibers in[18].
tions) is then stratified into beams with a constant specific | the previous investigations, finding exact soliton solu-
polarization of radiation in such a way that the cubic mediumijgns and identifying the role of radiation for given initial
promotes the formation of waveguide channels. In the abovgayes are possible because the propagation equations in-
equations, the first term accounts for the propagation of thgolve a transverse diffraction plane with low-dimension
light electric field envelope&,(F, ,z) andE,(r, ,z) along numberD=1. In this situation only, the techniques of in-
the z axis, expressed in the frame moving with the groupverse scattering transform can be applied to nonlinear inte-
velocity of the beam. The second term describes the trangrable systems, such that not only the emergence of solitons
verse diffraction of the wave components and the third ondut also the radiative contributions can be quantified. As an
represents the cubic nonlinearity induced by the medium realternative method, the so-called variational approach, or av-
sponse with nonlinearity coefficients,; («,3=1,2). Here  erage Lagrangian method, in which the solution is approxi-
the transverse Laplacian reali§ =2+ J5 for a diffraction mated by a trial solutiofensatz with a sech or Gaussian test
plane spanned by the radifis=(x,y). For technical conve- functlon,_may supply relat|vely_good results for _descrlblng
nience, this diffraction plane may formally be extendedto the localized core of the solutiof9). However, it never
transverse dimensions, including a temporal dimension to ad€scribes the amount of power dissipated through radiation,
count for anomalous GVD. which can play a significant role during the soliton evolution.

Equations(1) and(2) generally apply to incoherent waves Recently, radiative corrections to solutions of the standard
with the same central frequency, for which the intensities ar¢/2fiational approach were proposed by Kath and Srfgh
simply added, so that the nonlinearity coefficients may bd" order to remove the discrepancies introduced by this ap-

identical. They can be extended to an infinite set of couplej’r‘))(i"",ation method in the treatment of the 1D NLS equation
nonlinear Schidinger equations and serve, for instance, as 40" @ Single wave. They indeed showed that by supplement-

theoretical model describing the self-trapping and Se”_mg_az—dependent chirped-sech core With radiative Iosse_s, the
focusing of incoherent light beams with low-intensity pro- soliton core could attain a mean size with steady amplitude,
files in nonsaturating biased photorefractids]. In the Whereas these quantities, when they are basically computed
one-dimensional cas®(=1), the formation of solitons was from the variational method, periodically oscillate around the
earlier discovered by Manakdi2] on the basis of the same M€an sohton_ size. Without such radiative corrections, the
equations. The properties of the soliton solutions for thisStan,dard variational approach was also applied o the 1D
model followed from a direct application of the inverse scat-Version of the coupled NLS equatiot$) and (2) with an
tering transform(IST) techniques and the potential intersec- 21Satz containing a finite number of dynamical parameters,
tions of several wave forms, involving more than two soliton WNich included the amplitude, the size, the frequency chirp,

solutions, were also investigated. Let us here recall that th e velocity, and an arbitrary phase i.n sech-type soliton so-
integration of system(1) through the IST method can be utions[21,22). Through this meth.od, It was specula_ted that
performed under specific conditions involving a low dimen-Pound states can emerge .f.rom |dentlcgl, symmetrically lo-
sionality (D<2) and severe constraints on the nonlinearity®2€d pulses, when their initial velocity is not too large, and
coefficients. From a physical viewpoint, these constraintd®'™ @ unique bound state for which the soliton widths and

amount to imposing that the ratio between the components djoSitions oscillate around mean values. Also, in spite of dis-
self- and cross-phase modulations intervening in the coeffic'€Pancies connected with radiation emission, both numerics

cientsA ,4's must be equal to the unity, while the self-phaseand average Lagrangian formalism displayed evidence that

modulation components need to be identical for the two po_solitons, with initial velocitiesvg syfficiently large (o
larizations. In addition, four-wave mixinFWM) contribu- >ve) 10 overcome a mutual attraction, could escape from

tions that parametrically mix wave components must be zerg?ach other and become well separated asymptotically. The
This condition can easily be fulfilled if the two orthogonally critical velocityv, permitting this escape process was shown

polarized beams are incoherent so as to average the Fwi# increase with the soliton amplitude.

terms to zero, which can be made possible in, e.g., an On the othe( hand, comparable mvestlgatlons were per-
AlGaAs planar waveguidd14]. In connection with this formed by McKinstrie and c_o-w_orke{§3,24] in the context
topic, the formation and stability of solitons in birefringent ©f WO light waves propagating in a plasma beat-wave accel-
materials, such as single-mode optical fibers, were numer€rator, with emphasis on the physical configuratior: 2.
cally investigated since linear birefringence leads to spliting' NS SPecific situation is in analogy with the former equa-
an input pulse into two polarization modes. In the presencdOns since the scalar envelopes of such light waves evolve
of the Kerr nonlinearity, it was observed that the fractional@ccording to the coupled NLS equations

pulses in each of the two polarizations may trap each other R

and move together provided the soliton amplitudes exceed a i9,A,+V32A,+Q,A,=0. 3)
threshold value. Without FWM, the two partial pulses lock

together and travel as one unit when their amplitude is iniHere the time variable plays the role of the propagation
tially equal and above some threshold whose size increasebistance z, compared with Egs.(1) and (2), and Q,

i9,Eo+ V2 Eg+ (A1) Eq|2+ A Eo[?) E,=0,

which can easily be derived by assuming the space and ti
envelope approximations. Due to its vectorial nature, a wav
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=aQIdA,J? denotes the derivative of a potential functign  Ref.[24] (see also the more recent investigatj@s]), while
with respect to thexth wave intensity. For a weakly relativ- for initially separated waves, a critical distance between two

istic electron quiver velocity, two light waves are expected toidentical_waves was identified' as the minimal distance be-
couple through the nonlinear potential yond which they may behave independently of one another.

Below this critical distance, when the power of each wave is

larger than the third of the critical power for self-focusing for

Q=3 X A plAAALR (4  one Gaussian beam and smaller than this critical power
«p=1 threshold itself, two identical waves can attract each other.

where the values of the nonlinearity coefficients depend or] NS €ntrainment mechanism is comparable to that of two
the polarization state of the waves. When assuming a circuld?€@mlets composing one self-focusing beam governed by a
polarization and initially scalar wave fields, the original sys-Single NLS equation10]. Although originally discovered in
tem (3) can readily be extended to the nonlinear coupling ofRef. [24], wave amalgamation, consisting in the coalescence

n (n=2) scalar wave envelopes. For two waves only, th f two waves fusing into a self-focusing central lobe, was
nonlinearity coefficients are symmetric with the valueg, revealed for Gaussian beams with a small separation distance

=A,,=1/8 for the self-interaction components and with between their centroids. Therefore, this interaction pattern

A= A,=1/4 for the crossed components. Studying thestill deserves to be investigated when coupled waves are ini-

modulational instability of plane waves in the forg(x,t) oY Wel separated from one another by at [east one wave
=A2ex;{i(E/3Aaﬁ|AB|2)t] by periodic perturbations, McKin- lameter.

strie and Binghanj23] established the growth rate of the to ;Zeg(')r ﬁ;thljfr?aﬁeiz's tlc\)ngSenV(\j;allze thi p:re_\nous rebs_;ults
instability of n coupled waves piing (n=2) V€ packets in a cubic

medium and to determine their regimes of mutual coales-
Y2 (K)=k2(2A ,— K2) (5)  cence. We fi(st recall in Sec. Il the mair! proper@ies of col-
@ ! @ e lapsing solutions for NLS equations with multiple wave
wherek; (j=1,...D) denotes the components of the wave components and we derive some criteria of the blow-up and
vector carried by the perturbation and the's are the eigen- coalescence of wave envelopes in terms of a critical separa-

2

values of the stability matrix tion distance depending on their individual powers. This
yields general results for two or more light pulses, inferred

AulAl?2 AQAA] o ALAA from relations governing the centroids and the mean square
AsilALAL AAy2 o AunlANA radius of the waves. In Sec. Ill the approximate evolution of
. (6)  two light waves is described by means of a variational ap-

Al AAL AplAdAsl o And A2 proach applied to Gaussian beams. The shape of the attractor

attached to the self-attraction of beams modeled with Gaus-

These driving terma , depend on a symmetric combination Sians and sech functions is also discussed. In Sec. IV an
of the initial amplitudes of both waves and for each spatiainstability criterion, derived from the so-called Vakhitov-
eigenfunction of the perturbative modes there is a pair 0'KO|O|(O|OV criterion of Stablllty for solitonlike bound states,
temporal growth rateyi(l?) associated with each eigenvalue is constructed by using straightforward perturbative tech-

of the stability matrix entering the linearized problem of Eq_?lquesb.aroun(l:! the .?.Ol'tobn stadtest. ;Fhls ;esult (lergplzigzes that
(3). In particular, for two wavesA , reads|23] or cubic nonlinearities bound states of couple equa-

tions are unstable whenever the space dimension number is

20 = (A1 A2+ A AP greater than or equal to the critical value 2, which is consis-
- tent with the property following which solutions to this sys-
V(A 1 AP = Al Ag?) 2+ 4A A | ALA 2 tem can blow up in finite time whe@=2. Finally, in Sec. V

@ the competition between the modulational instability of
coupled waves, which tends to break them transversally dur-

Thus, whenever the system of coupled waves is unstabl@d the early stage of their quasilinear evolution, and their
(which is ensured forA2,>|A ;A5 With Aj,=A,y), the natural tendency to form one self-focusing structure is dis-

maximal growth rate of the instability is given Dy cus;ed in terms of typical tim_e scales along which the pro-
—A, and corresponds to the optimal wave numieg, duction of small-sized cells is favored. To conclude this

= VA, for the most unstable perturbative mode. Note thatVOrk: the dynamics of counter- and copropagating beams are

from Eq.(7) the nonlinear coupling of two waves contributes /S0 Priefly compared.

to enhance their instability since the coupling term in &9.

participates in a positive amount, making the maximal Il GENERAL RESULTS
growth rate larger than the growth rate of either wave alone.

Furthermore, nonlinearly coupled waves were studied To start with, we consider light waves that propagate with
from the viewpoint of their mutual interactions and self- a constant polarization in a bulk cubic medium following the
focusing dynamicg24]. Regarding the occurrence of col- model equation$3). For a suitable optical material, the satu-
lapse, general results based on the main invariants of thetion effects in the form, e.gQ,=A|A,|%/(1+alA,|?) for
system(3) and on virial-type arguments allowed for bringing one wave[26,27), wherea is the saturation coefficient, are
to light an entrainment mechanism between two Gaussiagxpected to limit the singular growth of the wave and to form
waves being located at different centroids. Conditions forsteady bullets in the medium. In the present investigation,
self-focusing of two superimposed waves were detailed irhowever, we will ignore these saturation effects by formally
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taking the limita— 0 and permit the waves to collapse freely virial integral can be directly computed by first multiplying

in self-focusing regimes. Although “unphysical,” a Eq.(8) by x?u* (x=|X|) and selecting the imaginary part of
collapse-type singularity emerging in the medium will enablethe space-integrated result and second by integrating over
us to stress more the localization mechanism of the wavegysce the real part of E¢8) multiplied by (X~§u*). Taking

during their self-focusing stage. Thus the analysis presentefe time derivative of the first relation finally yields]
below rather concerns waves growing in this stage before
saturation becomes efficient. 4 A N -
A= | 2Hot 5 DI, Ho=H- 5 (07

A. Case of a single NLS wave N (13)

We first recall some basic properties attached to the non-
linear Schrdinger equation for one wave whose electric PN .
field envelopeu(X,t) is henceforth assumed to be scalar andwhere(x)-&(x) Is the velocity of th.? center of mass of the
governed by localized wave packet. This velocifx) is in turn governed
_ -, 5 by the relatiorv{X)=P/N, whereP=2 Im [(u* Vu)dXis the
idu+Veu+Alu|*u=0. (8 wave momentum. From the identitg3), one then infers that
the mean square radius of a given localized wave tends to
zero in a finite time, henceforth denoted ty< +, under
some specific conditions. Among those, the most well known
ones are the condition of multidimensionally=2, and the

The positive constani\ represents the nonlinearity coeffi-
cient and the time variable has been chosen as a general
evolution variable: It can denote a true time variabie the
scope of p'asm‘? phy§i¢§4], ora propagatipn d‘St?”mS requirement of having negative-energy staties<<0. Al-
well, when dealing with paraxial sglf-fo&:usmg of light,2]. though other conditions involving nonzero initial diver-
In this case, the Laplacian operafdf=V? corresponds to gences| 4,1(0)<0] of the wave fields are available in the
the transverse diffraction of the waves taking place in a plangurrent literaturg’5,28], Ho<0, meaning that nonlinearities
of vectorX=r, . For technical convenience, we will some- continuously dominate over wave dispersion, applies to any
times employ the standard notations for denoting kfe initial focusing shape of the waves and we shall retain it only
norms for the sake of simplicity. So negative-energy wave forms

centered on the origin with a zero velocity for their center of

Iil=| [ 1oz

1/p . .
:>||f||p5f |f|Pdx 9) mass have a typical transversal scale tending to zerb as
p i
assuming any functiofi being LP integrable. Also, in con-

—t. providedD=2. In that case, the virial identity simply
reduces to the inequality

nection with the Cauchy problem associated with @Bg. we 8H

shall henceforth suppose that the wave functiaofx,t) Al<—, ()=

evolves from initial datau(X,0)=uqy(X) belonging to the N

)1/2,

[%ul3
N

(14

Sobolev spaceH! with norm ||u||H1=(||u|\§+|\€u||§ o
From the vanishing (t)—0, one then deduces that thé

which invites us to search for solutionslocalized in the ) S ;
transverse plane and decaying to zero at infinity. norm of the gradient ofi must tend to infinity by virtue of
the inequality[28]

Two main integrals of motion are related to the solutions
of Eq. (8), namely, the dimensionless power

2 -
2_ £ .
N=|ul3 (10) lullz= 3 IV ulllxullz, (15)

and the Hamiltonian which follows from a straightforward estimate of the nokn

. A integrated by part. In this limit, th&* norm of u also di-
H=|Vul3— = |ullz, (11)  verges in turn because of the constancyHoénd the wave
2 blows up with a maximum ofu| growing to infinity at the

center{29]. These mathematical properties thereby reflect the

formulation idu=SH/Su* (the asterisk means complex singular nature of the collapse process originating from the

conjugaté. In addition, Eq.(8) constitutes a Lagrangian sys- vanishing ofl(t). Let us recall in this re:spect that a wave
tem deriving from the Lagrangian integral blow-up, characterized by the divergeni&eul|5— +, gen-
erally takes place before the complete vanishing of the virial
integral I(t), which yields only a maximum collapse time
[28]. Indeed, wave blow-up occurs before the total vanishing
of I(t) because only a finite amount of power is captured
from which a fundamental relation governing the meanfrom N in the collapse process. For instance, in the so-called
square radius of solutions can be established. This mean critical caseD = 2, this finite amount of power is nothing but
square radius, often called the virial integral, redds) the critical power for self-focusindN./A with N.=11.68
=((X—(X))?), where the angular brackets refer to the mean=11.7, which corresponds to the small&t norm obtain-
value of any functionf(X) defined by the integra{f(x)) able from the radially symmetric stationary solutions
=N"1ff(X)|u|?d%. The relation for the evolution of this u(X,t)=e"¢(|X|) of Eqg. (8). The solution corresponding to

from which Eq.(8) can be derived through the Hamilton

i
LZE f (u* gu—ud,u*)dx—H, (12



6610 LUC BERGE PRE 58

this norm is even, positive, and unique aNgd enters the By means of the bound.6) and the virial inequality14), we
following bound from beneath the Hamiltonian: therefore deduce that light cells with a zero initial velocity of
their respective centers of mass can collapse under the nec-
essary requirement Rl +N,)>N./A. Thus, for two iden-

tical beamlets ll;=N,), each of them must possess an in-
dividual power above the threshold

H=|Vul? , (16)

Y
N,

which is established after using the Sobolev inequdlity;

<C||Vul|2|ul? with the best constar@pes= 2/N, [30]. As a N;=N,>N/4A (21)
wave collapse is characterized by the divergence of the gra-
dient norm of the envelope the requiremerii>N¢/A thus 5 participate in the blow-up of the whole beam. In the op-
arises as aecessary conditiofor initiating the collapse. posite case withN;=N,<N/4A, the Hamiltonian integral
H in Eqg. (16) must be positive and the beam simply spreads
B. Case of one NLS wave with several distinct components out with two dispersing components. The boad) particu-
Before discussing the interaction of copropagating nonlinJarly applies to two superimposed cells witfX;)=(Xp)
ear waves, we first investigate the case when one solutidr¥(0)=0]. It then arises as the minimum power that each
u(x,t) of Eq. (8) is composed by distinct “beamlets” (or ~ beamlet must engage in the best possible situation to favor
“cells” ) initially well separated and each exhibiting a maxi- the collapse, i.e., when both light cells participate in the col-
mum located at the centroi®,(t)) («=1,...n). Thus solu- lapse process by overlapping completely at one point in the

tions to Eq.(8) can be sought under the form transverse diffraction plane. o
Let us now investigate the case of sevefial distinct
. n o beamlets that are well separated and identified by their re-
UK, D)= 2 U (R— (X (D)), 1), (17 spective maxima located at the centroidg,(t)) («

a=

=1,...n). In this situation, the whole solution has the general

where the discrete centers of mdsi(t)) are functions of orm (17) and the total invarianil is expressed as

time. For simplicity, we consider the simplest configuration
dealing with two beamlets, i.ey(X,t)=u;(X—(Xy(t)),t)
+Uuy(X—(X,(t)),t). Only few analytical results can be in-
ferred in such a case, apart from those deduced from the
initial data themselves: By computing the total invariaNts 2 2 2y 2
andH in terms of their “free” counterparts < | n(ual*+fugl*+ -+ |ug|%)dx= ”gl ez,

sz (uptup+---+uy)(uy +uj +---+up)dx

n

- A 22
Nl Ho=lFui- 5 lud (e=12, 2
(18) after using Chebyshev’s inequality. Thus, in view of Eq.
(16), N must exceed\./A for initiating a wave blow-up and,
supplemented by their respective interaction contributions, itonsequently, we obtain the necessary condition for self-
is always possible from the valuesNfandH estimated with focusing ="_,N,>N/nA. So n identical beamlets must

Ug(X)=Uu(X,0) to speculate on the influence of their interac-gach possess an individual power above the critical threshold
tion contributions. We can indeed deduce whether the waves

will either behave independently of each other or strongly
interact mutually, depending on the size of their initial sepa-
ration distance’(0)=|(X;(0))—(X,(0))| occurring in these
interaction terms. For Gaussian beamlets, the interactiohlote that the conditiofi23) is not sufficient to guarantee that
terms ofH andN exponentially decrease with(0) in such a  the waves systematically undergo a collapse. Promoting a
way that entrainment and ama|gamation between two |ighwave CO“apse also depends on the distribution of the initial
cells into one central lobe can be promoted wh#@) is  wave forms and on the resultant sign of the total Hamiltonian
smaller than a critical value ensuring thatremains of the intervening in the virial relation13). However, from Eq.
orderH(8(0)=0). In the following we give some necessary (22), it can be inferred that the constrai(#3) on beamlet
conditions on threshold powers, above which two separateBower, which yields a minimum power for reaching self-
beamlets can coalesce and collapse in finite time when focusing regimes, can be lowered by increasing the number
= 2. Plugging the decompositian=u, + u, into the integral ~ 0f beams: An infinity (— +) of equal beamlets with a

N, we share the different contributions of the latter as very weak(almost zerp individual power could in principle
promote wave collapse by superimposing efficiently their in-

. s . tensity distributions. This property can be transposednfor
N=N;+N+2 ReJ (Uugu3 )dX<N;+ N2+2f lugllus|dX initially steady-state Gaussian beamlets composing the initial
(19 beam shape

N;=N,=---=N,>N./n’A. (23

and apply the Schwarz inequality together with the obvious

n 12 J— (% 2
estimate 2b<a?+b? to finally get ux,00= > (&2) ex;{ - wﬂw ,
a=1\ TPy Pa

N<2(N;+N). (20) (24)
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all of them being superimposed on the origin of coordinates -

ith (% (0))=0 - : H=2 [Vu 53 =2 luugl @D
with (X,(0))=0. Herep, is a measure of the mean radius of = a2 = 2 apli2
each Gaussian component apiglan arbitrary constant phase
factor. Regarding, for simplicity, light filaments with equal
radius (,=p) and zero phase,=0), the total power
contained within the entire beam reabls=(="_,N,)?,
while the Hamiltonian H expands asH=(N/p?)(1
—AN/47). The occurrence of collapse is then possible for
N>4x/A, ensuring therebyd <0. Thus, for beamlets with
equal power, we get the condition for eaalth beamlet:
N,>4m/An?, which is compatible with Eq(23). Collapse
may then occur in this configuration for an infinite number of
beamlets i— +), each possessing a weak powet ,(
—0). For two Gaussian beamlets only, the necessary condi-
tion for promoting a wave collapse turns out to resg 2l 124 9— * g S
=N,=Ng/4A ==/ A, as discovered ifi10]. ﬁtf X|u,|"dx=2 Im f (U Va)dX

This result can be generalized to beamlets having an ar- (28
bitrary initial shapeg,(X,0) and entering the wave function . R
u(Xx,0)=="_,\N,#.(X,0). The functiong, can be chosen (?t['m f (uaVug)dx :—f U2V A glugl?dz,
as, e.g., a sech function for dealing with a critical threshold ’
power closer to 11.7 thanwhen A =1 [28]. Considering ) .
initially superimposed beamletsN is expressed agN  from which the center of mass for theth wave (X,(t))

This directly follows from multiplying Eq(26) by d,u* and
integrating over space the real part of the result, after sum-
ming up over the entire set of indicés,8). Conservation of

H, proceeding from the conservation lasH =0, requires
one to assume symmetric nonlinearity coefficients satisfying
A 5= A g, for a# B, which will be done in what follows. In
that case, we can derive a dynamical relation for the total
center of masgX)=N"1fXZ |u,|?dXN=Z2 |u,/|z. From
straightforward algebra, one easily obtains

= (="_,VN)? b.J2 andH can be written as =N *[x|u,|?dX is found to be governed by the relation
: e 2 PRE )=£f|u 12V > A lugl?dx
H=| 3 N 1943 WZR, S T g, sl
? _2 f |u,|2VQ,dx (29
(3w, = fesas
o P = A P
2 ||€¢a\|§ ' Therefore, the total center of mass obeys the identities
Hence the constraint of, e.g., negatidor collapse implies . P . N .
that the power in each beamlet must together satisfy aX)=1 P=2Im ; (uz Vuy)dx,
2 = 2 (30)
d 2|V ¢l N
(aZl \/N_a) K=o (25 ENO=Z No(Re)=0,

which yieldsN,>K/n? for beamlets with equal poweK  which leads to the conservation of the total wave momentum

=4m/A in the Gaussian case B(t)=P(0). If the initial data ensureP=0, one has(x)

=0 (as for, e.g., Gaussians without space-varying phase
(X(1)) == N (X,(t)}N=(x(0)) is fixed at every time.
On the basis of the model equatiof® and(4), we now  Consequently, for two equal waves with a total center of

investigat_e the dypamical properties o= 2 co_prppagating mass located at the origin, the separation veciot)
waves, with a particular attention to the possibilities of mak- - (1))~ > (1)) between their respective centroids will
ing them merge and self-focus in finite time. To this aim, We_<x1 )~ (x2(1)) ! pectiv 1as wi

rewrite the set of equation&), defined with the potential Simply be given byd(t) =2(xy(t)). Furthermore, the wave

C. Case of several copropagating waves

function Q=3=, sA ,45U4|?|ugl?, in the generic form identified by the subscript 1 has a center of mass evolving as
: = _ - 2A - -
9o VAU 25 Aglutgl =0, (29 Ra0)= T f s ¥ |u,|dx, (31)
1

whereX with indices« and/or 3 refers to a summation over here the right-hand side corresponds to the flux induced by
1<a,B=n (forinstanceX, ;=>,_;23_,). Unlike the pre-  wave 2 from the crossed contributions of the nonlinearity.

ceding context for which only the total powdr=|2,u,ll5 By repeating the computational stages in Sec. Il A, we can
was preserved, the systd@6) now conserves the individual moreover establish a virial-type identity for the mean square
powersN,=|lu,||2 separately and the total Hamiltonian radius



6612 LUC BERGE PRE 58

n

(. : v N 2A 4N
(=g f (Xx—(x))2> |u,/?dx (32) H=Y (1= %ewﬁﬁ(omiwi) ,
@ a=1 Py p=1 2m(p,+pp)
38
consisting of a generalized form of E¢L3), namely (see 39
also[24]), with 8,.4(0)=|(X,(0))—(X4(0))|. Assuming now that the
4 waves possess identical transverse ragii< pz=p), H re-
W)= | 2Ho* f 2Q+D| Q-2 Qalualz) dx] duces to
n

N AN
4 2—-D H= —2l1- Zap B e—5§5(0)/202 ] 39
=N[2Ho+ — QEBAaﬁnuauﬁué], (33) pZ[ > “an 39

By using N,— NB)2> 0, we deduce that each wave compos-

. _ 1 "2 .
W'th_HOZH_ZFZ) IN. Expression(33) reduces to the con- jng 5 negative-energy state will self-focus provided their
ventional formg;1(t)=8H/N in the 2D case for waves car- power exceeds the critical threshold

rying a zero momentum. Henceforth regarding this critical

caseD =2, we use both Schwarz and Sobolev inequalities to Aar

bound the nonlinear potential &f with N,(5#0)> ; g (40)
2 A e~ ﬁaﬁ(O)IZp

5 F

C - C -
luaugls=<zlualia+ 2lugla< 3 IVualiNa+ 5 [VuglsNg, o _
(34) which is always larger than the bou_nd in £E86). Note that
the value of the bound from below in EG0) decreases all
which yields the more as the mutual separation distadgg(0) is small.
In particular, superimposed waves wiff)5(0)=0 will to-

noo n N gether collapse if and only if their partial powers exceed the
H= D ||Vua|§( 1- X Agg —“) (350 threshold value
a=1 G=1 N¢
. 0 4 N
after making use of the best consta®y..= 2/N. [30] to- N,(6=0)>N;= > . (41
gether with the symmetrj ,;=A g, . From the above esti- > Aap > Aap

mate, we deduce that initial states with eneigy 0 pro-

mote the collapse ddll the wave components since the total o .

virial integral consists of the direct sum of positive integralsor(‘) the other Eand, k(;epl_ng hm I_ml_nd fthévilclx(o): 5/33(0?)
Ia(t)=N‘lf(i—(i))2|ua|2d;<, implying 1.(t)—0 for ev- , one can observe that in the limit of well-separated struc-

ery a=1,...n in the limit 1(t)— 0. Thus, for a total center of F‘l:rr(SeS”[éaﬁ(oLzr:irforE?z;ncsy#'8] HH|:sEg|ﬁen:gy (t,r\lle /j)‘é;?l"f
mass being the origin of coordinates, this propertyjmplies in_ N /), from which we recove?thae cogstrgint on col-
turn that each wave component blows up WitRiu.l2  |apse thresholdsl,>N{=Ng;/A,, for isolated Gaussians.

— + by virtue of the inequality15). Self-consistently with Now we denote by(0) the initial distance separating the
Eq. (35, promoting wave collapse requiraspriori that the  entroids between two neighboring waves; thé$0)

partial norms must be above a certain threshold, namely, — 5 4(0) for a# B. We search for a critical distand such

N that for 5(0)> &, the waves can be expected to evolve inde-
N,> (B=1,..n). (36)  pendently of each other, due to the exponential decrease of
S A the interaction term oH. To this aim, we formally rewrite
ap this integral of motion asH=3 ,H ,+H(8)=H(5=0)
+AH(). We conjecture that a strong interaction between
In the case of two coupled identical waves, we simply getwaves will take place if §0) is such that |H(0)|
N;=N,>N;=N./(A1;+ A1), and special interaction re- >|AH(8(0))|. Conversely, waves will behave with a negli-
gimes can be expected, for which waves amalgamate intgible correlation if the initial separation distané) satis-
one collapsing lobe as their total mean square radius, includies |= H,|>|H;,(5(0))|. The critical separation distance
ing their mutual separation distance, decreases to zero imelow which waves can interact is then given by the zeros of

finite time. H and it is determined from the general estimate
To illustrate the above results, let us consider in-phase
Gaussian waves with initial shapes E AaﬂNaNﬁe7§§/2p2:E N |47—A,.N|. (42
- > a#t B a
- [N, [X—(X4(0))]?

Ua(X,0)= [ —7 expg — 27 (37 For two wavess, thus reads

I C _ .y 2N NLA 15 12
and exhibiting no initial divergences;l (0)=0] and no ini se=p| 21In (43)
tial velocity [ 9,(x,(0))=0]. For such initial enveloped S N (4m—A,,N,)

expands as a=1.2
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with A ,=A,,. For equal waves with ;,= A ,,, the expres-
sion for &, simplifies into
}1/2

with N=N;+N,=2N, and Nf=2N/A;. This result
agrees with McKinstrie and Russel’s resulp to a normal-
ization factor3 in front of Laplacians of Eq(26); see Eq.
(12 in Ref. [24]], as N! is equal to N /A;=6N?,

NA12/Aqq

S.=pl| 21 44
c= P n ZNCT_N (44)
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1

-8 2 1 s 2
ype > AopNge 8p(0)2p :E[zAllee 5%(0)/2p%]

B#a
+O(A N e 25%00?)
(46)
for well-separated waves initially satisfying(0)>2p (see,
e.g., Ref[10]). Thus nonlinear interaction regimes between
coupled self-focusing beams can be reduced to the problem

of the interaction of three waves on a line, i.e., tith wave
with two lateral ones. The basin of attraction for mutual en-

0_ .
where No=Nrit/(A11+ Agp) is the power threshold that ainment of one light spot surrounded by two equal others
each of two superimposed waves must exceed to provoke thg, 3 line then decreases whéf0) is above a critical value

collapse of the whole wave packet. Choositg,=1/8 and
A1,=1/4, one thus getdl{=327 and N%=327/3. In other
situations involvingA 1> A 15, a nontrivial critical separa-
tion distances, exists for high-power wavesN> ZNL) as
long asN;=N, lies below the finite limitN,,,=47/(Aq;
— A1) only, whereadN, 5=t whenA ;<A ,,. From the

d:. whose expression is the same as in &) with A4,
replaced by 2 ,,. Similarly, it could be checked that the
interaction regimes between light pulses distributed on a
plane lattice reduce to those of oath wave with its four
nearest neighbors. For spots regularly spaced on a lattice
in the transverse plane, the interaction betweernthevave

above results and employing the virial properties of the NLSwith respect to its four nearest neighbors increases by a fac-
equations, we can then deduce three characteristic regimesr 2 compared to spots spaced on a line, so that the value of

for the wave evolution.
(i) If N;=N,< NS, for any value of§(0), the waves con-

8. is the same as in E¢44), but with a crossed nonlinearity
coefficient A1, multiplied by 4. From these arguments, we

tain too a weak power to maintain their localized shapes andasily infer that the critical distance below which waves can

they spread out asymptotically with a positive Hamiltonian.

coalesce increases with the number of waves and their geo-

(i) If N°<N;=N,<N!, both waves can merge, but they metrical space.

asymptotically disperse withl>0 whenevers(0)>4;. In
the opposite situatiod(0)=< 5., wave components fuse and
form a self-focusing central lobe witH <0 andl (t) —0.

(i) If Nf<N;=N,<Np. both waves, each havird,

Besides, the formation of a central lobe and its ultimate
self-focusing fully develops in the medium before the first
zerot{™ of the total virial integrall (t). After this instant,
the set composed by tmeNLS solutionsu, (e¢=1,...n) can

<0, generally self-focus independently with an individual no longer exist. In the two-dimensional case, Ef) leads
power already exceeding the self-focusing threshold for théo

collapse of a single Gaussian wave. However, if they are

only separated initially with5(0)<<é., they may still amal-
gamate into a central lobe that will collapse in finite time.

2

4Ht
(="

+[ 1 (0)]t+1(0), (47

The previous analysis performed for two waves can easily _ )
be extended to the mutual interaction of a larger, but finiteWith H defined by Eq(39). Assuming therH <0 for Gauss-

number of waves between their nearest neighlfimgeness

lan waves with no initial divergence, the maximal time for

here prevents an infinite number of beams from mutuallythe blow-up of all waves is given by

balancing their interaction potentialsFor identical waves

with N;=N,=---=N, and equally separated by the same

distances(0) on a line, the interacting term ¢ [Eq. (39)]

containing the exponentially decreasing contribution expands

as

1

47 g=1n+ta

2 2
A aﬁNBe_ 5aﬁ(0)/2p

1
= = [AqaNe om0

+ A oNye” FO)2p% L 4 A oNpe~ in(o)/zpz],
(49)

with 5§B(O)E[(a—,8) 5(0)]?. Let us thus assume that the
ath wave refers neither to the first wave nor tite one. For
symmetric nonlinear coefficientsA ,,=Agzz and A,z
=Agq (@# B) with comparable magnitudeA(,, 1= A1),
we get

tg ()

WN'(O)pz 1/2

Nof 2 AqpNgexp(— 8245(0)/2p% —4m
B

>

a

<+, (48)

With 1(0)=p2+ = ,N(X,(0))%N, we finally deduce that
the maximum collapse moment increases with the initial dis-
tance separating the coordinate of the wave centroid from the
origin and when the separation distance between waves in-
creasegnote that for identical and symmetrical waves one

has [(x,(0))|=6,5(0)/2]. Thus the collapse(or self-
focusing time may be “tuned” for experimental conve-
nience by fixing in a appropriate wagi) the number of light
spots,(ii) their respective incident powers, afid) their lo-
cation in space. A plot o5, versusN and another one illus-
tratingty'™ versuss&(0) andN=nN,, have been given in Fig.
1 for different powers in the case of two waves=2) with
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i @ in which the HamiltoniarH has already been defined in Eq.
(27) for symmetric nonlinearity coefficients ,;=A 5, . The
af ] variational approach, constructed from a Rayleigh-Ritz prin-
ciple, assures priori that the wave dynamics may be de-
scribed in terms of a finite number of time-dependent param-
eters entering a trial function appropriately chosen to fit the
true solutions of the coupled NLS equatiof@§), obtained,
2f 1 for instance, from their numerical integration. This trial func-
tion is elaborated from a test function, standardly chosen
among Gaussians or sech functions, which ensures a well-
localized shape for the wave forms. It is now well known
that for a single wave governed by the cubic NLS equation,
oL o = = o T R— sech test functions are more suitable than Gaussians in the
N (in uaits 7) sense that, e.g., with a nonlinearity coefficient equal to unity,
the critical threshold power for self-focusing computed from
sech functions$**=11.72) is closer to the minimum value
N.=11.68 than when it is computed from Gaussians
(NSS=N_=47) [19,31. This discrepancy, however,
consists of a narrow margin of error that we can further omit
because the dynamical aspects such as self-focusing or wave
spreading sorted out from Gaussian functions are qualita-
tively the same as for sech functions. Also, by starting ini-
tially with Gaussian optical wave packets as they are often
introduced in experimental setups, it seems more natural to
select a Gaussian test function fitting the optical pulse at
least att=0. Nevertheless, sech functions will be discussed
at the end of this section for modeling 2D collapsing wave
packets. In the 1D case where no collapse occurs, application
of the variational approach with sech test functions has been
performed by Anderson and LisdR1] and then by Ueda
and Kath[22] to describe an incoherent two-soliton interac-
tion and the nonlinear coupling of two NLS waves in optical
fibers, respectively.

FIG. 1. (a) 2D plot of &, [Eq. (44)] versusN=2N_, and(b) 3D
plot of tT**[Eq. (48)] versusN and §0) for two equal waves sym-
metrically located from the origin. The power is expressed in units
of 7r and the nonlinearity coefficients satisfy,,/A ;=2. Two dis- A. General derivation of the variational equations
tinct ranges of power allowing for the existence &f delimit thfe for coupled waves
. . . - c
b e oinso W st considr  est function wih & general o
with the wave power and to increase with the initial separationdepending on the rescaled spatial variablgg=[x
distance between wave centroids. —{X4(t))1/a,(t), where(x,(t)) denotes the centroid of the

ath wave and,(t) its typical time-varying radius. From Eq.

identical individual powers. Even though the estim@® of (o) it js easy to derive the continuity equation for the power
the collapse time consists only of the maximal instant for.onservation of this wave:

blow-up, it is finally worth noticing that an empirical esti-

mate for the time taken by the coalescence of waves itself alul2=—2V.Tlu.I2V arqu.)1. 50
may be yielded byAtc03esetM 5)—t1¥(5=0), when one el [lual gu.)] 50
keeps in mind that overlapped waves should promote the

fastest collapse process. This relation, assumed to keep a covariantﬁform after substi-
tuting a trial function with a self-similar(¢,-dependent
ll. VARIATIONAL APPROACH shapd 28], suggests the choice of, with a real test function
TO INTERACTING WAVES ¢, in the form

To investigate the dynamics of mutually interacting

beams, we perform a variational approdtte so-called av- . X— ;a(t»
erage Lagrangian methpdllowing us to depict the main U(X, 1) = [a,(1)]P? b a(t)
tendencies of coupled light pulses. We use the property fol- “ *

lowing which Eq.(26) derives from the Lagrange equations Cayty - - )
8LI6u* = 6L16u,=0, whereL is the Lagrangian integral xexpl da(t) [x—(Xa(t))]

L=I§E J (U} Uy = Ugd})dx—H, (49) +i§<;?a(t)>~[i—(ia(t)>]+i§a(t)}, (51)
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where{,(t) denotes an arbitrary time-dependent phase factemporal evolution of the coupled waves. The simplest rela-
tor. In the substitution(51), the space-dependent phase istion is derived fromsL/5Z,=0: It restores the conservation
then necessary to balance self-consistently the additionaf power witha®(t)/J,(t)=aZ2(0)/J,(0), for which, with-
contributions coming from the time derivatives af(t) in out loss of generality, we can Chomg(o)zja(o)' imply-

the self-similarly transformed version of E(0). General-  ing therebya®(t)=J,(t). Keeping in mind that each wave
izing expressior(51), we now perform the standard average -onserves its individual power, we then gét= MaaB/Ja

Lagrangian procedure by employing the more general solu=, . The remaining relations are derived frdmwith re-
tion S,
spect to @, ,(X,),¥,,a,) and expand after straightforward

- 1 ()Z—()Za(t)}) p[ - calculations as
Uy(X,t)= @ exp if,(t)[x
(0= bal o Ol
oL a,
" 2 P >z . —=0=6,= ,
~(Xal D)1+ 5 a0 [X= (X )]+ Lol 30, 4a,
(52) oL -
. . - :0:> lpa:<xa>1 (55)
where 6,(t) accounts for the quadratic chirp parameter and o,
the vector:Za(t) is related to the velocity of the centroid
displacementx,(t)) for the ath wave.J,(t) is a real am- 6L S
plitude factor such that,(t)—0 when wave collapse devel- 5& ) N
ops in finite time. Plugging Eq(52) into the Lagrangian “
(49), we find that this integral explicitly reads N
" Aop -
n D . L, :<Xa>:_5¢;ﬁ:1 m%a)Ww(%g,aa.ag),
Lzazl Z Va(—ﬁaaa—40aaa) (56)
+6a'(2<;a>aa9a_laalzfa_zﬁaal/;a) oL Va - 2501 DAaa g
_ ’ i B E:O=>7 Aa=" 8 T 5pD71 W,z5(0,a,=ap)
oy e o, ¥e| Da
a 2 . lﬂa_ ga_ T - 52_ n
‘ + M(?[a’DW (80s,84,35)]
L A g > praho1 2 BaOF TaBTaprZaCpD
+a1521 2\]&\][3 aawaﬁ(aaﬁaaaiaﬁ)v (53) (57)

where &aaE&/aaa. Although improper, the notatioﬁ<;a>
means a derivative with respect to the central position of the

ath pulse, affected by its unitary orientation vectég
(strictly speaking, one should introduce an auxiliary angular

variable w, entering the  definition <>Za>
=|(X,)|(cosw,,sinw,) and derive the Euler-Lagrange equa-

with 8,5(t) =(X,(t)) ~ (X4(t)). This formulation of the La-
grangian involves the coefficients

wffﬁwﬁ&m @Eféwxﬁm

Mazf |¢a|2d§a, tions with respect to this cyclic variable too. However, for
technical convenience, we omit it and treat the ve as
(54)
— - 2 - a canonical collective coordinate in our Lagrangian ap-
DaEf Ve bal?déa, Wap(3ap.84,8p) proach. Taking into account the inversion symmetry be-
.. ) tween theath andgth waves,é, ;= — 64, it is then easy to
:J bu(E)2 b (aa§a+ 5aﬁ> > find again the conservation law for the total wave momentum
o p ag “ linked to the total wave centroid by the relatioff(x)
— 12yn " A BN — .
with ¢,= ¢% . Here the integrals are taken in the whole = 912 a=1No{Xa)/N=9PIN=0 since
space range {»<¢,<+») and V}a meansV§a=V(x n n
—&,). For the sake of simplicity, we assume an even test 21 M (X,) = MEIH a—aoﬁ [0 ) Wapt 93 Wap] =0
function ¢, such that the vecto€, reduces to zero. The o p (58)

variational equations obtained by performing the functional

e Ll respect_ to the enPre set of time- In addition, the variational equations restore the conservation
dependent parameterd (6, ,(X,),a,,{4.1,) constitute a of the Hamiltonian, which now is expressed Hs=H"®
dynamical system describing the global tendencies of the- H®! with
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n —~ -2
D asVv, A - 2 ZAaBNﬁ - 2 2,2
free_ oy Ta’a o - X,)=— — 5 8ae e @t (65
H QZ]_ ai 4 Zag Waa(oiaa aﬂ):|’ < a> ﬂ;a W(aa+aﬁ)2 af ( )
(59 .
) ) a [, A uN, 13 AD,ZBNﬁZ
M, - A - 4 4w | a3 f7. 2w(ac+ad)?
HEXtE —= Xa 2— _‘YE Wa 5(1 ,a,,a3). a Pra @ B
azl 4 {Xa) a#B,a,f=1 2a2 plOap 2 2
(60) X a Wb\ o= g @t ag) (66)
@ (a5 +aj)

H® contains the kinetics of the pulses whose centroids move
with the velocity(X,) and the potential energy due to their APPIYing Eq. (65) to two neighboring waves, we construct
mutual coupling, denoted by™=—3 . ;A ,W,p/2a5.  an equation fo,u(t) (o, =1,2):

From the above expression, we can distinguish different dy-

namics of the pulses following the sign Bif Starting with 5 = 2
initially unchirped[a,(0)=0] pulses and considering the p
caseD=2, waves with a zero initial velocity in their cen-
troids may collapse individually iH™®<0 and with a neg-
ligible interaction term measured through,,. Alterna-
tively, even if H™® is positive, but wheneveH™ still
guaranteedd <0, pulses can attract each other and form
central lobe that will collapse in finite time. On the contrary,
waves withH>0 will ultimately disperse, after fusing or
not. Between both of these behaviors, we have the boundary . N F{ 52

(AgpNgTAg.Ny) 3
(a5 +aj)? @B

02 gl(@l+a))

T a#p

(67)

Let us now investigate the case of two identical copropa-
gating waves with equal poweid; =N, and undergoing a
gnutual coupling with symmetric nonlinearity coefficients
such as those employed in RE24], i.e., A;;=A,=3 and
A1,=A,=13. In this case, the separation vector evolves as

caseH =0, from which we can define an “escape” velocity

of collapsing wave forms. This escape velocity corresponds
to the minimum speed of centroids that initially superim-
posed waves must possess to become detrapped and over-
come the collapse. Following this definition, the escape ve-

al+as

3(t)=(X1(1)) — (X2(1)), (68)

locity is given for theath wave by

4 A up @5(0)

2 _
Yea"M,a2(0) % 2 a4(0)

Waﬁ(é,aa ,aﬁ) - Sa .
(61)

For two identical Gaussian pulsell {=Ng), its expression

simplifies into v2=4[(N,/N%)—1] and it makes sense

while the wave radia;(t) anda,(t) are governed by analo-
gous dynamical equations: The equation dft) reads

é_l: _ AllNl i_ A12N1
4 47 | ai m(ai+as)?
52 2
Xaqy1l— expg — 69
1 (a2+ azz)} F{ a’+al (69

when pulses form a collapsing bound state with sufficiently

high powersN,>N2=47/(A o+ A 4p).

B. Interaction of Gaussian pulses

From now on, we investigate the dimensional cé&se

=2 suitable for describing a paraxial self-focusing. We

make use of the Gaussian test function

balE)= K e 2 (62

This leads in particular to the interaction term for the non-

linear potential ofL:

2

2,2
5 B 5 efsiﬁl(aa+aﬁ)
aa+aﬁ

(63

Waﬁ( 501B 1aa1alB) = WKLYKB

where the separation distan@g,; is now a time-varying
function, and the remaining coefficiertt4) appearing in the
average formulation of simply read

V,=D,=M, =K, (64)

and the second equation fap(t) proceeds from the same
equation(69) in which the indices 1 and 2 have to be re-
versed. So, starting with identical symmetric waves having
equal initial conditions with a;(0)=a,(0) and a,(0)
=a,(0), oneobviously has,(t) =a,(t). When such waves

are initially superimposed witlﬁ(O)zﬁ and 3(0)=6, they
stay mutually overlapped at every later time and their radii
are governed by the relation

1

a; 1- Ayt Ay 2 aca
ai! 1 2

4 4 1 (70

Thus initially superimposed waves collapse in finite time
provided N; =N,>N%= N /(A 3+ A1) =8X47/3, in ac-
cordance with Eq(41). In the opposite limit] 5(0)|—>+oo
with [9,8(0)| =0, Eq. (69) still yields | 5(t)| =|5(0)|= +

at every time and,(t) is governed by

1

a3’

ay

AN
g D

Tam 7y

a;=ao,
4 1 2

such thalN = 7K, . The wave centroids and widths are thenwhich restores the usual self-focusing threshold for one

found to be governed by the dynamical relations

Gaussian wave: N,=N;>Nf=N./A;;=8X4m. For
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equal waves such a§=N;+N,=2N;, we recall that the limit 5(0)<.=2.61p [Fig. 2(c)]. This value ofs., exactly
critical distance beyond which well-separated waves can beaeading 5.=2.608 14 and computed with Eq72) for p
have independently of each other is given by Egl) with =1, is in excellent agreement with the one identified numeri-
Ap=2A 5 cally from the variational equationsii®=2.6083. Finally,
the waves self-focus separately fdf=N,=357> NL pro-
vided &(0) is at least abové,.=2.51, as expectddrig. 2(d)].
At very high powersN;=N,>N!, the critical distance,
becomes formally independent di=N;+N,, with &
With 8(0)< 6., waves are expected to mutually attract and— (2 In 2)*2p asN— + and &, thus diminishes a®l in-

1/2

dc=p|2In » p=a1(0)=2a5(0). (72

C

2
2N.—N

merge into one central lobe N;= N, satisfies creases from R in this power regime. Thus the waves are
more difficult to amalgamate when they both possess a
32w power strong enough to promote individual collapses. Con-
0__ = f: - . B . .
Ne= 3 <N1=Np<N.=327. (73 versely, wherN; =N,< NL, 6. increases withN until infin-
ity asN— 2N/ .

More precisely, for§(0)< 8., the Hamiltonian is close to We can remark that in the amalgamation regimes charac-
that for superimposed waves, which is negative. So, in thiserized by the fusiof §(t) —0] and collapsg a,(t)—0] of

range of power values, Gaussian waves should merge aqg,umed waves, the quamitieg(t) anda,(t) may have an

fuse into a central lobe that is condemned to collapse in finitgysillatory behavior during transient evolutions. Oscillations

time with a resultant power exceeding the critical threshold

for self-focusing. In addition, due to the presence of the ab!" a(t) characterize wave components passing through each

; : : - ther and they have also been detected in the interaction of
solute value in the estimat@?2), the existence of a finite other .
separation distance, belowtgvhich two equal waves Mh two incoheren{21] and coherenf32] NLS solitons treated

_ f 3 by a similar Rayleigh-Ritz principle. Pulsations in the wave
N2>N must fuse and self-focus, makes sense, eVellidths can be compared with the steady oscillations devel-

- o soped by soliton solutions to the 1D version of E&6) when,
containing separately a power larger than the critical threshé_g_, they are close to become mutually trapped, as discov-

Old. NL.. From 'these .pOSSibi”tieS’ we emphasize the threeer d in Ref[22]. Because the widths,(t) are driven by the
typical interaction regimes between both waves, as they have “

been introduced in Sec. I, namel§) whatevers(0) may be, ~motions of the central position&,(t)), both these quanti-
the two waves spread out when their individual power isties oscillate with analogous periods that are hgre.enhgr
below N% (i) for N°=32m/3<N;=N,<Nf=327, the modulated or damped when collapse occurs. Oscillations in
c c v,z e ! the separation distanc¥t) can be understood from the first
integral of motion computed with Eq68) for two waves

with equal amplitude and widtha,(t) =a,(t)].

waves merge whei(0) is relatively close tos. and form a
dispersing structure if initially5(0)> &, or, conversely, they
fuse into a central lobe that collapses in finite timeS{D) -
<6, and i) for Ny=N,>N{=32m, the two waves gen- In this configuration let us indeed multiply E¢68) by
erally collapse in finite time individually, except if their ini- and combine it with Eq(69) multiplied by a,. By doing so
tial separation distance is smaller thén in which case they and integrating the resulting equation once in time, we obtain

may amalgamate until forming a collapsing structure. the potential function formulation
In this last situation, coalescence of waves can clearly )
develop if they are separable initially, i.e., if their mutual %(5)2+2(é11)2+1'[(5,a1)=0, (74)

separation distance is initially at least larger than two times
their radii with 8(0)=2p=2a,(0)=2a,(0). The two

maxima of the waves are then well separdhii@]. Note that (8,a,)=|4— AuNy 32_ _22_
the double conditios,= 5(0)> y=Cp with C=2 implies ™ a; ag
a bound from above foN;=N, when assuming prizori N 28— 2122
f ; f _nf —C2/2 1 e 1 e ‘0ol
N,>Nf,  that is, NI<N,<Ng=N{(1-2e7¢7) S W [
=1.37IN{. Conversely, this constraint introduces a bound 77 a ao1
from below in the opposite situatioN, <N/, that is, N’ 1 - .
>N,>N;x=0.78N{. These intervals become narrower 3 (80)°—2(ag)?, (75

when increasing the value € ChoosingC=2.2 as in[24]
yields Ng,,=1.216N} and N;x=0.85N{. To illustrate the . . T _
different interaction regimes for two waves, we have numeriWith  5,=45(0), 6,=05(0), ap=a;(0)=p, and ay
cally integrated Eqs(68) and (69) and plotted the corre- =21(0). From Eq. (74) it is clear that solutionss(t)
sponding curves for the vectai(t) and the radiusa,(t)  =|6(t)| anda,(t) may exist only if the potential function
=a,(t) in Fig. 2, starting withp=a,(0)=a,(0)=1, a,(0)  I1(J,a;) is negative. For subcritical poweM; <Nct/(Aq;
—2,(0)=0, and 6t5(0)=5. (i) For Ny=N,=10m, both +Aqp) Iead!ng to an . increasingal(t), this condition
waves spread out monotonicallyFig. 2(a)]. (ii) For NS 11(5,a,)<0 Is systematically satisfied when
<N;=N,=307<N!, the waves merge and form a dispers- 1 - oN

ing wave form provided §(0)>6,=2.61p [Fig. 2b)], Z (30)2+ 2(ag) %= 21 Agp
whereas they self-focus into one central lobe in the opposite 2 ™

2 2
e 50/2a01
S (19
Qo1
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FIG. 2. Wave radius(t) =a,(t) starting from unity without initial divergenceonly a,(t) is shown as a solid lifneand separation
vectorg(t) (dashed ling versus time, numerically integrated from the variational equatiéBsand (69). By abuse of notationé(t) has
been kept as a vector, instead of modulus, in order to permit it to become negative. The value of the initial separation distance between
centroids, which determines the evolution of the wave radius (i) = 0, has been indicated around the solid cur¢a@sinteraction regime
(i) for which the two waves with a weak poweN(=10m) monotonically disperse. Fa$(0) far above 5, wave radii were observed to
disperse identically(b) Interaction regiméii) for which waves with partial powed ,= 307 merge and spread out asymptotically when their
mutual separation distance initially satisfi§{®)> 5.=~2.608.(c) Interaction regiméii) for which the same waves as (n) amalgamate into
one central self-focusing lobe wheif0)< &.. Note the oscillations in the separation vector that are damped to(delateraction regime
(iii ) for which waves withN ,= 357 collapse individually before their separation distance reaches zero, except@heninitially less than
a critical value. Numerically, it was observed that this critical distance of separatiodwa3.14, i.e., slightly above the estimaté4)
yielding 6,=2.51 forN_,=35.

For the initial data such a; G and 4—0. however <4, =4, and the wave controids would oscillate periodically
0~ 01~ Ys , ; ] ; _ Jy S T PRY
II(8,a;) is negative provided tha¥(t) belongs to the with a fixed periodT,=v2/,*dé/ {[(5’%) [21]. In the
bounded rang&(t)< 4, , with §, defined by present context whera,(t) varies, 6(t) oscillates either
while its amplitude ands, increase witha;(t) when &,

Ayt =5y> 6. [see Fig. )] or until vanishing when collapse
8, =V2ay(t)] In NA- A occurs, as both beams merge symmetrically widges 5,
1712 2 = 8, [see Fig. 2o)]. In this situation, as;(t)—0, the modu-
lus of 8, simplifies into the limit
l ai o 02202, 12

—In| 1+ a—(z)l —477 A -1 , (77) S, (1) —— xfzal(t)lnl’zﬁ, (78)

— a,(t)—0 7T — 11

NiA1p Agp NyA o A_lZ

V.Vh'Ch consists of a turning point beyond wh|ch_the INterac-, nich makes sense in the regime of intermediate powers for
tion between waves is attractive and conservative. The rel

. ) ; e N %oalescence: A (A 1+ A) <Ni<4w/Aq; (0<47/NiA 4o
tive Ct.entrmdﬁvelocﬂyﬁchanges its sign together wathat the “Au/A,<1). In this range the oscillation amplitudes are
coordinatess(t) == 4, , so that the beams move towards forced to decrease with(t)< 5, (t)=0(a,(t)) and to attain
the point of coalescences&0) where they pass through ultimately zero, as observed in Fig(c2 Before this, both
each other. The beams can then periodically change plac&t) and a,(t) reach extremal values at some poinis
before, e.g., collapse occurs. For comparison,aijf(t) =6, . The number of oscillations increases with the collapse
=a4(0) was fixed, 5(t) would evolve in the rangej(t) time, as the value 0d(0) is augmented t&,=2.61p. Con-
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versely, we could reason in terms &fa, above which no  §(0)=3.5, while numerically the variational model yields
solution exists and below whid(t) oscillates until reaching the collapse time;*'=1.7644. For the same power values,
zero. From a mechanical analogy, the potential functibn but choosing nows(0)=3, one hagl®=2.6235=t'". In
here p|ayS the r0|e of a pOtential We” W|th a typ|Ca| W|dth the ama'gamation regimes Starting from powu§< N(f:
decreasing to zero in case of collapse, in which a particle-32;  one can point out the characteristic valubis
pe_rlodlcally moves down the pot_ent!al slope towards the_ 30, and 8(0)=25 leading to tM*=56764=t"
point of coalt_ascencé=0. Such oscillations might, however, =56756 and N;=307 and 8(0)=2.2 yielding t™
t_Je subdued in the true coalescence process because_the vanas 550 var |nthese configurations, the collapse moment
tional method captures the total power engaged in both,; " c A X
waves without permitting them to evacuate a power excess tB 1S generally equal FO Its "'T'a' coun.terpagi - This com-
the boundaries, as any NLS solution usually does with &2"'SON holds except n the first (_:onf|gurat|o_n,_ _for Wh:g)]( the
power above the collapse threshfB]. Note finally that the ~total mean square radiufrom which the definition oftc™
existence of the turning poing, at high power levelsN, follows) and the separation distan&ét) do not vanish si-
>4/ A,; does not make sense, which justifies why no OS_multe_meously when both wave packets separatgly collapse.
cillation develops in Fig. @)). The mgtanlt?‘"‘X must here be regarded as a maximum exis-
Let us now discuss some estimates of the finite collapséence time for solutions that blow up on their respective cen-
moment at which two coupled waves may blow up in the 2Dtroids beforel (t) has time to vanish at=tg®. So, in this
case. When the virial integrdB2) tends to vanish in finite Situation, the results given by the variational approach have
time, both of the positive virial contributions (t)  to be considered with caution. _ _
EN’lf(>Z—<>Z>)2|ua|2d;< tend to zero in the same limit. Al In summary, the variational method provides reliable re-

the waves should thus blow up at the same instantvhich sults fitting the virial estimates in most of configurations, the
appears logical by virtue of their mutual nonlinear couplings"mpk.est of WS'Ch are the prr:e—wave case g.nd the case of two
in Eq. (26). Claiming this just consists of a conjecture since SUPENMPOSEd Waves ‘1"/’2” a wave radl () ~ay(t)

we know that for the cubic NLS equation a wave blow-up — a1(0)[1+4€Qt /al(OH , where Q=1-N,/32m in the
generally arises earlier than a total collapse for which thdormer situation and)=1-3N,/32w in the latter one. In
moment of the singularity is given by the first zerolgf). ~ More complicated configurations involving some dynamics
This momentt™ is the maximum time for blow-ug48) in the separation distanc, s(t), the results obtained from
established frgm the virial relation?l (t)=8H/N with N the variational model may supply less precise information
—S_N, andH given by Eq.(39) C:)nsidering WO Waves about the coalescence mechanism. In particular, the develop-

ith initial di 1(0)=0 q all d ment of oscillations ind,4(t), which means that before
without any Initia |verge2nce (0)=0] and all centered on reaching a single-wave-form state waves pass through each
the origin, one ha§(0)= p“ and the maximum collapse time

other periodically, should be confirmed by direct humerical

reads integrations of Eq(26). In spite of this reserve, we can nev-
12 ertheless emphasize that the variational approach restores the
{max= 2 N _ (79 principal t_endencies that two coqpled NLS waves can de_—
42 N 2 AaBNB_l velop: their simple spreading, their mutual coalescence until
ra A collapse, or their individual self-focusing according to their

individual powers, as illustrated by Fig. 2.
For Aj;=A,=3 and A=A, =%, this expression simpli-
fies into t7™=(p%2)[32m/(N—32m)]"? in the one-wave C. Interaction potential for the self-attraction
case with N=N;> N£=327T (N,=0) and into tg1ax of sech-shaped waves
=(p%2)[327/(3N,,— 327)]*? for two superimposed waves

with Na=N1=N2>N2=327r/3. These values o™ are in The previous analysis can be repeated with test functions

¢ . _C .__different from Gaussians, as, e.g., sech functions. Expressed
perfect ag_re_ement with _those given by ““me“c"?" mtegra}tlonﬁq radially symmetric geometry, sech functions yield a criti-
of the variational equation&1) and(70), respectively. This cal power for collapse closer to the minimal boudt
excellent agreement follows from the fact that for NLS sys-_ ;1 sa \vhich the.2 norm of solutions to the cubic NLS
tems_, the b_ehawor of the_ radius, (1) ~ Vl.a.(t). is self- equation withA ,,=1 must exceed to promote the collapse.
consistent with the one obtained from the virial inted@8]. o vever when making use of sech functions expressed as
For two identical but initially separated waves witi; secrﬁ\/(x’—(x N2+ (y—(y.))Z] in the present scope, we
T]NZ (NZZNL%' p=§1(0)=a2(0)=1, and&(0)=9.4(0).  cannot conveniently determine the integral coefficients oc-
the estimate48) reads curring in the average Lagrangi@B3). Instead, we propose

o) —12 a test function based on a sech shape with separable variables
max_ 1(0) | Ny (1+2e~ 52(0)/2)_ 1 (80) and defined for thexth wave as
€ 2 |327w ' < > < >
> X= Xa(t) ) yEy_ ya(t) )
- (&) =VK, sec sec ,
where 1(0)=p?+= N (x,(0))?/N reduces tol(0)=p? Paléa) VE a,(t) a,(t)

+ 62(0)/4 for wave forms symmetrically located from the (81)
origin. Comparing this estimate with the results obtained

from the variational approach, we finf1*=3.2105 for high- ~ where the wave radius is assumed to be the same along the
power waves collapsing individually with; =N,=35r and  andy directions. Also, for the sake of simplicity, we will
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restrict the following analysis to the coupling of two waves
having identical radiia;(t)=a,(t) and symmetrically lo-
cated from the origin on thex axis with (x;(t))

= —(x,(t)), while {y,(t))=(y»(t))=0. The integrals enter-
ing L then readV,=2K,7%/3, M,=4K,=N,, and D,
=8K /3, and the self-interaction potential between waves is
determined by the integra{t/aﬁ(gaﬁ,aa,aﬁ), computed as

0.15

0.125

Was(X)/NeNj

0.075

0.05

3 2(X4(1))
Wep(6ap= 2(Xy),8,= ag)= 3 KK gF ( a—(t))

(82) ° 0 1 2 3 4 5

for two symmetric waves with equal radii identified by the

indicesa=1 andg=2. Here the function FIG. 3. IntegralW,4(X) versus the ratiX= 5(t)/a,(t) enter-

ing the interaction potential of two waves with equal radigt)
X coshX) —sinh X) =a,(t), when modeling them with Gaussiafslid line) and sech

- f i hed li
F(X) sin}‘F(X) (83 unctions(dashed ling

satisfies ling_,... F(X)=0 and lim_., F(X)=2%. From the ratio X= §(t)/a,(t). This integral provides a measure of the
expression of the free part of the Hamiltoniés®), we de- attéaaucstor of mutually couplczad waves. It is given by
duce that 2D identical sech-shaped pulses have the criticdVas Sg):(NaNB/ZW)eXp(_X /2) for Gaussian pulses and
power threshold for collapsé!, ..=12/A . This valueis  PY Wi )=(N.Ng/3)F(X) with F(X) defined by Eq(83)
thus closer to the minimurb? norm NJ/A,,=11.68A ., for sech-shaped pulses. As can be seen from Fig. 3, both
for collapse than its Gaussian counterpart/A . More-  attractor potentials present similar behaviors along the ratio
over, when two sech-shaped pulses initially overlap with no®(1)/@a(t):  Wqp(X) vanishes as<— +, that is, when
chirp and a zero velocity in their centroid, we observe fromd(t) =+ ora,(t)—0 if both waves remain well separated
the total Hamiltonian that each of both superimposed wave8ndW.s(X) reaches its maximum value ¥s-0, i.e., when
must possess a power exceedfy o =12/(A 4o+ A,p) for ~ Waves mutually overlap. In this situation, the interaction
the two pulses to undergo a collapse. From these propertie®€™m Of the HamiltoniarH™, which involves this integral
we can guess that the regimes of interaction between sep&ontributionW,z, diverges to—e when collapse develops

rate sech pulses witN,, =N will be the same as those for With 8,(t)=a,(t)—0. Finally, we can note that self-
Gaussian pulses, namelyi) wave spreading wherN attraction of waves is efficient within a broader, although
<N2,sech (i) dispersion or amalgamation of two merging less deep, basin of attraction for sech pulses than for Gauss-

pulses with medium pOWENg,sech<Na<N(f:,sechv whenever 'a" pulses.

their initial separation distance is above or below a critical

value, respectively, an(ii) individual collapses when both IV. AN INSTABILITY CRITERION
pulses are well separated with,> N;sech. These typical FOR COUPLED SOLITONS
behaviors can be checked from a direct numerical integration
of the variational equations for the separation distance be-
tween waves and the pulse widths, which read in this conte>{§

In Ref. [23] the modulational instability of two or more
oupled plane waves was investigated by means of a pertur-
ation analysis applied to E€B). This analysis consisted in

(N,=Np) as determining the growth rate of perturbations acting on el-
. 4N d ementary solutions to E¢3) that are assumed to be uniform
=32 ax F(X)|x=5,aa, (1) =2(x,(1)), in space and oscillatory in time as
(84) n
77_2 A N 1 A BN d Aa()z,t)=A2 exr{i 2 Aaﬁ|A,8|2t:|1 a= 1,...n, (86)
oA _ aa’ Yo _ a a 2 =1
16 aa [1 12 ] Ei 4a3a§ dX [XF(X)]|X=6/aa-
(89

with real background componenbsg. Instead of plane

In particular, periodic motions of the wave central positionsWaves with uniform amplitudes, we can attempt to determine
and widths can be detected in the amalgamation regimes tdpe conditions for instability of stationary solutlons»to Eq.
which both §(t) anda,(t) tend to zero in finite time. Only (26), being bounded in space and localized wjith,(x,t)|

the shape of the pulses and their related critical power thresh-,g g5 |)Z|_>+oo_ Such solutions usually refer to solitary

old for collapse slightly change, compared to Gaussian tesfaves or “solitons” and they are expressed as
functions. The evolution regimes of coupled waves remain

comparable for Gaussians and sech pulses. For further com- > > _

parison, we have plotted in Fig. 3 the integti),5(X) char- Uy(X, 1) =Ru(X)eXp(iA 1) (87)
acterizing the self-attraction potential between two waves

with equal radiusa,=agz, when they are either Gaussian Here R, is supposed to be a real, positive, and eveell-
(solid line) or sech shape@lashed ling as functions of the shapedl function obeying the differential equation



PRE 58 COALESCENCE AND INSTABILITY OF . .. 6621

. n where the self-adjoint operatoks,, andL,, are defined by
—NaRat V2R, + X A, 4RER,=0 (88)
B=1
n
provided\ ,>0 whenever the functionB, (8=1,...n) de- LOQEAa—ﬁz—IZl A 4R, (92)

cay to zero at infinity. For the sake of simplicity, we suppose

that for each wave there exists such a stationary state, which

is unique, radially symmetric, and positive at a given fre- L. =L. —2A R2 (93)
" — 0«

guency\ . So we now turn to the problem of the stability of

spherically symmetric solutions of E6) in the form(87).

This stability problem is investigated from the perturbed so-To describe the instability of solitons mutually coupled

lutions with symmetric nonlinearity coefficient ,z;= A 5, , we de-

fine the perturbation VeCt0r§=(U1,vz,...,vn)T and w
=(Wy,W,,...,w,)" embedding the components of the per-
turbative eigenmodeghe superscripT means “transpose)’
and reformulate the above spectral problem as

Ue=[Ro+ (v tiw,)]eMe, R,=R,(x) (89

wherev, andw, are real-valued functions localized at in-
finity. Linearizing Eq.(26) with respect to these functions
then yields the eigenvalue problem fof andw,,,

[ytva: LOaWa ’ (90) atv = LOW1 - atW: Lll) . (94)

— _ Equations(94) involve thenxXn symmetric matrices, which
=L 2> A gR.Ravg, 91 , ; L
laZa apar"BYp O il consist of self-adjoint operators:

Lo O -+ 0 Lis —2ARR, o —2A40RIR,
0 L -+ 0 —2A5RR L - —2A5,RR

Lo={ .. .2 . ) = 0ErE Loy (95
0 0 o+ Lon _2Aanan _2An2RnR2 I-1n

whosen-dimensional elgenvectors with eigenvalue zero are  Next we determine the sign @5|le> by maximizingy?

R= “(Ry,Ra,. n)T and VR=(VRy,VR,,....VR,) since on the class of vectors orthogonal R This amounts to
LOR 0 and LlVR 0. The latter relation simply follows solving the spectral problem from,, rewritten in the con-
from deriving the ground-state equatibg,R,=0 for each  venient form

Ra(|>2|) with respect to space variablggy convention we R R R

note V=(x/|x|)- V]. Combining Eqs.(94), we obtain(?tzzj Liv=\*v+puR, 97
=— Lole;, so that when one assumes that the perturbatio

grows exponentially with a growth rate, we find thaty
obeys the relation

Where the sign oh* will indicate stability \* >0) or in-
stability (\*<0) and ©#0 is an undetermined Lagrange

multiplier related to the orthogonality constrai{xﬂli}zo.
Following the procedure expounded[i#,33,34, we expand

2_ _ @“‘—ﬂ’z (96) v andR in terms of a complete orthonormalized system of
(v|L51v> eigenvectors for the operattr (which is allowed sincé. ;

is self-adjoin}
Equation(96) makes sense provided the vectorsare or-

thogonal to the ground-state vecty i.e., (z;||5>=0. Here
the angular bracket§| ) correspond to thé&? inner (scalay

product between two real vecto(sﬂ 5>=f5T-5 dx. Choos-
ing vL R, we first recall thatv|L, 'v) is positive definite.
Indeed, each componeR, is the unique eigenstate af,

|—1|le>:;<| b (99)

such as|5)=2kck|12/k). Elementary projections provide the
coefficientsc, = u({ 1| R)/ (A= \*) and therefrom

with eigenvalue zero, which is the lowest eigenvalue as each |5>=ME M (99)
o IS posmve and nodeless. Consequently, for all eigenvec- K Ne—A*

tors VLR, Lo is positive definite and so |{SU|LO v) This
property can easily be found again by using the explicit for-Furthermore, the orthogonality cond|t|011;|R) 0 gives
mulation ofLy,=— (1/R,)V-[R2V(1/R,)]. uf(N*)=0 with
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As it can be justified for symmetric waves or by performing

f(K*)EE <R|fk><‘/’k|R>_ (100 a simple shift in the frequency range, we henceforth assume
A— N* that all solitary waves possess an identical frequekgy
=Np,=:=\,=A>0 for a=1,..n. Straightforward ex-

. . - . — plicit calculations based on Pohoz'aev identities can indeed
In this sum, the eigenvectoy,=VR with eigenvalue\; X . . :

_ T _ show that such localized solitary waves may exist provided
=0 does not contribute sindg/y|R)=0, which leads t®;  p<4. Under this requirement, EL03) takes the matricial
=0. Noticing that the even components Rfwithout node form
imply that the components d&f R each have one node, we
infer thatL, hasat leastone eigenvalue that is strictly nega-
tive A\g<<\1=0 and it satisfies ;o= N\gt¥y, Wherey, hasn
components with no zeros. The existence of at least on
negative eigenvalue fdr; can follow from, e.g., differenti-
ating the bound-state equatibg,R,=0 with respect to the
space radius=|x|, as the Laplacian operat8r in Eq. (92) f(0)=(R|L; 'R)=— < R
reduces tdv2=r1"Pg,rP=1g, for radially symmetric bound
states. Doing this, one readily getd,d,R=[(1 leading to
—D)/r2]4,R, with 9,R=(d,R;,0,Ry,....0;Ry)T, from n

. . . . 19 - -
which we infer thatL,; has surely a negative eigenvalue f(0)=—=—N{R}, N{RI=> |RJ% (105
whenD>1 since AN a=h

R .
L1 =R (104)

&nd from Eqgs(104) and (102 we finally obtain

R\ 12”: e
= 5215<a>-

R R 1 .1 . Now we make use of the dilation invariand@a(i,)\)
<f9rR|L1f9rR>=(1—D)<r ﬁrR‘ T &rR>- (10D RRO(WAX) to find N{R,}=\1"P2N{R%}, where R’
=R,(A=1). From Eq.(105 it is clear that instability of

An important remark is that, unlike the cubic NLS equationPound states arises in the dimensional c&zes, for which

for one wave, it is not proved actually that each perturbative(d/ IN)N{R} <0 assured$(0)>0. Following this procedure,
component in the matricial spectral problé&8) possesses a the dimensional case =2 consists of a marginal configura-
negative eigenvalue. Indeed, unlike the one-wave case fdion suggesting instability.

which L, is a scalar operator with a single negative eigen- In the opposite cas&(0)<0 concerning low spatial di-
value, each of tha spectral equations here contains couplingmension numberB <2, we recall that* is positive when-
terms involving the neighboring;’s, which seems not trac- everL; has a unique negative eigenvalue solving EBJ).
table analytically. In addition, the set of all eigenvalues mayThis property then supplies a necessary condition for the
not reduce to a unique value with multiplicity equal to 1. stability of ground states. It can also be viewed as a sufficient
Therefore, knowing the existence of at least one negativeondition for soliton stability in the Lyapunov sense, follow-
eigenvalue, we choosg<0 as the largest one among all the ing which \*>0 ensures the positiveness of the NLS
possible negative eigenvaluesyEsug\<0}). By choos- Lyapunov functional [28] S=H-H{R}+A(N—N{R})
ing Ao SO, it can be seen th&({\*) decreases to-= asA*  =(y|L,v)+(w|Low), with H given by Eq.(27). However,
—M\g and increases te-« in the limit \* —\,, where\, is  as warned above, stability follows from uniqueness and sim-
the first positive eigenvalue &f; (the latter surely exists and plicity of the negative eigenvalug,, which we cannot prove
can be selected as, e.g., the smallest positive value in thgue to the vectorial nature of the spectral probl€#). Let
continuum spectrum df,). As, moreoverf(A*) is a mono- s indeed imagine that a second discrete eigenvejse\,
tonically increasing function ok™,_it goes across tha® g gyists; then, within the intervalkp,\o[, there should
axis only once within the interval\h,\o[, SO that we can  gyist another valua* located before the root of(0), en-
determine the sign ok*+0 from that of f(0). For f(0) suring the instability of solitary waves even in the 1D case.
>0, \* is negative arld a sufficient condition for instability pso 'if L, has a double eigenvalue, there exist two orthogo-
follows. Forf(0)<0, 1" may be positive only if it can make nal eigenstate:aa1 and 52 that can be linearly combined to

be sure thah,<0 is unique. From Eq(98) we remark that - ) > )

construct a vectov perpendicular tdR, which surely leads
to instability. This ambiguity is nevertheless overcome when
one investigates the stability of identical ground states in the

form  Ry(|x])=Ra(|x])=""-=Ry(Ix)=¢(|x), where ¢
obeys the cubic differential equation

R| ) (dh|R
f(0)=; ( |¢kﬁ¢k| )

k

=(RIL;'R) (102

and we can derive the ground-state equatigpR,=0 with

- 2 3=
respect to the frequenay, to get AN+ Vot (At Aot +Aq)$°=0, (106

by applying the symmetry between the coupling coefficients
20N ap=2paA >0 With @, =1,2,...n. In that casel.;
is a scalar operator with only one negative eigenvalye

IR, IR
—2> AgReR, -L=-R,. (103

L E— —_—
YONe ST %N,
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<0, so that the constraint(0)<0 leading todN/dx>0  dynamics inferred from the virial arguments expounded in
guarantees the stability of the coupled ground states. ThiSec. I, up to oscillations in the separation distarfi¢).
property naturally applies to 1D NLS systems for which Criteria for coalescence have been elaborated on the vanish-

coupled solitons compose the set of minimizers of @8).  ing in finite time of the virial integrall (t) for negative-
This set decomposes over the elementary sech soliton solgnergy states, which includes the vanishing of the separation
tion distance between wave centroids and depends on the number
and individual power of beams. Consequently, those theoret-
B(X)= _ 2\ seclf \/Xx), (107) ical expectations may be .altered to a certain extent by
blow-up phenomena occurring before the total mean square
Zl Ata radius of coupled waves, together with their mutual separa-

tion distance, has completely vanished. Further details on
which is thus stable. This result agrees with the orbital stalMteraction dynamics require numerical integrations of Eq.

bility of two coupled NLS ground states demonstrated in(26) that will be presented elsewhef@6] and will clearly
Ref.[35] for D=1. display evidence of amalgamation mechanism and develop-

Finally, we can here emphasize that the growth ge Ment of oscillations in the wave centroids. Eventually, a suf-
for plane-wave instability can be refound in the case of, e_g'ficient condition for the instability of coupled NLS solitary

two coupled waves, when combining EG80) and (91) for ~ Waves and a stability criterion for identical coupled NLS
uniform statesR,=A, (V2R,=0) with frequenciesx ground states have also been constructed, which can be ex-

=3, 1,2AaB|AB|2' which become unstable under oscillatory pressed in terms of the derivat.ivg of th_e. solitpn powers with
respect to their frequency. This instability criterion is com-

perturbations evolving as,,,W,~cosk-X). In addition, the tible with the condition for blow-up yielded by the virial

prec_eding analysi_s could easily be repeated for a gener entity, following which a wave collapse can develop in
nqnlmeanty function () entering EgzlAaﬁ}‘ﬂu_ﬁlz)ua cubic media forD=2 only.

W'nth F(s) _’20 as s—0, instead of a cubic one,  gina|ly it is worth investigating the competition between
23-1Aqplugl“u,, in Eq.(26). In that case, the basic opera- modulational instability and coalescence of coupled waves in
tor Lo, originally given by Eq.(92) for cubic nonlinearities  order to know whether a mutual amalgamation of waves can
has to be replaced byofa=)\a—V2—Eg=lAaﬁf(Rzﬁ), so be realized before the full development of their modulational

that the functions«, ,w,) obey the eigenvalue problem instability. This property might, for example, be used to pro-
mote efficiently the formation of hot spots with a very high
O =L3 W,, peak power in nonlinear, weakly dispersive media, starting
with a set of incident beams with much weaker intensities.
n For one wave(A;#0, A,=0) with A;; normalized to

— W, = L{ava—z 2 Aaﬁ]-"(Rz) R.Rgvg, (108 unity, the typical time for forming filaments from a uniform
p=1 plane wave with constant amplitudd,| and initial length
L, is given by the inverse of the growth rate derived from

H 4 2y — 2
with F'(R) = 0F1 IR. Egs. (5)—(7) and reducing in that case tg,.,=|AJ% The
number of filaments formed atm:y;wllx is equal to N
V. DISCUSSION =(L, /\mod®, whereD is the space dimension number and

. . .  NAmod= 27| A1 = 271/ Kinax [ Kmax=|A1| maximizes the growth
In the present analysis we have investigated the various v ¥(K)]. In terms of power, we also haw&'=P/Py

regimes of mutual interaction between nonlinear light waves - o

described by several coupled NLS equations. Three typic he.retPO— rf(l‘i/tz.) r;aandPlgDP_(f\ m°§<! i) %%E??pu\ﬁd from

regimes of interaction between two identical Gaussian wave§ © 'Nt€gral Iunctior )= [ ol Adlr 2r. 2e can
notice that the initial beam powe?,= (7/4)L7|A,|*=N;

naturally arise from this analysi§) When both pulses have il )
recovers the same value when it is computed with a one-

a power below the threshol? for the self-focusing of su- . file sel ; |
perimposed wave packets they spread out asymptotically i Ompone’_“ 2_D Gau53|a2n P“; e se ected in (Bq'),_modu 0
e substitutionN, < 7p?|A;|* with p=L, /2. Besides, the

time. (i) When the optical pulses possess an individualn® S | coll i f if.f na b L b
power betweerN® and N maximal collapse time of one self-focusing beam is given by

', whereN! is the self-focusing Ve
threshold power for an isolated Gaussian, the waves fuse infis =V~ 1(0)Ny/4H :”,2/_2,V |As|*p*/A—1 for beams -
one entity that spreads out asymptotically or collapses ifi@lly at rest with no initial divergence. Prowde&izlell
finite time whenever their initial separation distance is above™4: an intense beam has totally self-focused-at; " and
or below a critical values,, respectively. This critical dis- Ccannot exist any longer afterwards. Comparing #ftfSwith
tance of separation depends on the power contained in eath. it is easily seen that; <tc'™, which indicates that the
wave and the basin of attraction delimited By increases beam first produces filaments before self-focusing on the
with the wave poweriii ) When the two waves have a power Whole. Keeping this result in mind, we can then wonder
exceeding\{ they individually collapse without mutual cor- Whether two Gaussian beams can coalesce and collapse in
relation, except when their separation distance is less thaiie form of one self-focusing lobe before producing fila-
8., in which case they can merge into one self-focusinghents. The key idea here consists in companipg, for two
structure. HereS, decreases with the wave power. All these equal wave packe{&qgs.(5) and(7)] with tg®(6) [Eq. (48)]
characteristic regimes have been described and confirmed in the range of powers[Ng;/(A1+A1)]<N;=N,
Sec. Il through a variational approach that restores the mairs<(N¢it/A11) (Neii=47), where waves amalgamate under
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the conditions< 4. only. In the context of two identical the individual powers\, (e«=1,2) and the Hamiltonian in-
beams (\1;=A,,), the time for generating/=P,/Py; fila-  tegral(27) are still conserved for localized solutions of Egs.
ments from two coupled Gaussian waves is estimated by (112 and (113. Assuming againA,z=Ag, (a,=1,2),

5 we can also derive the evolution equation for the partial cen-
1 mp (109 ters of mass, reading

ti = = ’
T (At ARAL T (At AN,
with N;=N,=mp?/A,|2, whereas their maximum collapse 22 o0 2 f 21 2>
time reads It (Xal(t))= N Aap | 1UaPV]ugl?dx  (a#p),
(114
ma p? 1+ 6%(0)/4p? 12
te «5):?

2 2
) M_l which is nothing but the relatiof29) previously derived in
4 the context of copropagating waves. This again yields the

(110 conservation laws about the total center of mass located in
AssuringA ;,= 2A 1, one observes thaf®{é), although di-  the transverse spacg(x)=P/N and 47(x)=0 with N(x)

2 2
(Apgt+Aqe” 002

minishing asé(0)—0, always remains larger thag in the = N1(§1>+ N2(§2>. By repeating the principal steps for de-
range of powers promoting coalescence riving the virial identity, it can be verified that the integral
1 N-A [ (t)={(x—(x))?) for counterpropagating waves is governed
§<£11_11< 1, (111) by a dynamical relation that is identical to E@®3) previ-
v

ously established for copropagating waves. This result signi-

in such a way that the stage of filamentation breaking perilcles in particular that the merging dynamics of two counter-

odically the two waves might not be overcome by their mu_propagating waves i.n their transverse diffractior_1 plane is
tual amalgamation analogous to that taking place for two copropagating pulses.

To conclude this investigation, we would also like to em- A direct consequence of this result is that the formation of a

phasize some analogies between copropagating and count(g?-r;té?lle?;?hc'c')ntgnsaltyaggt Sveg\t/gsmg;ﬁfgdmby rﬁr:\?:icﬁaaf:(:ri?r::—e
propagating waves. To this aim, let us focus our attention o@ propagating P P

a system of two counterpropagating scalar wave envelope Ogcigr:g ;Z%gg?jf;g;"?g‘:rt'gre‘?mpsowg g”g'ﬁnnat'ri‘r? t‘;]rgrg ]
which are described as propagating p

posite direction.
i&tul"‘ €2u1+A11|U1|2U1+A21|U2|2U1:0, (112)
=5 | |2 | |2 ACKNOWLEDGMENT
—id U2+V U2+A12 uq U2+A22 P} U2:0, (113)
‘ The author thanks Dr. Anne de Bouard for fruitful discus-
in which u, evolves along the time variable in the direction sions on the topic of soliton stability in coupled NLS sys-
opposite tou,’s. First of all, it is easy to check that both of tems.
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