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Coalescence and instability of copropagating nonlinear waves

Luc Bergé
Commissariat a` l’Energie Atomique/Bruye`res-le-Chaˆtel, Boı̂te Postale 12, 91680 Bruye`res-le-Chaˆtel, France

~Received 20 April 1998!

An arbitrary number of light waves that collinearly propagate in a Kerr cubic medium is investigated in the
framework ofn (n>2) coupled nonlinear Schro¨dinger equations. Depending on their initial separation dis-
tance and their power, the waves are shown to either disperse, collapse individually, or still attract each other
to form a central lobe that may blow up at a finite time. General results, including the fundamental relations
that govern the wave centroids and their mean square radii, are established for two and more light pulses. Their
approximate evolution is described by means of a variational approach applied to two Gaussian beams and
theoretical arguments detailing the attractor associated with the self-attraction of beams are also given. Fur-
thermore, an instability criterion for coupled bound states is derived using perturbation theory. It is shown that
coupled stationary-wave solutions are unstable when the space dimension number is higher than 2, while their
corresponding ground states are stable at lower dimension. Finally, the competition between the modulational
instability of coupled waves and their natural tendency to amalgamate into one self-focusing structure is
discussed.@S1063-651X~98!13910-7#

PACS number~s!: 42.65.Tg, 52.35.Mw, 03.40.Kf, 42.65.Jx
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I. INTRODUCTION

For more than two decades, the question of optimizing
propagation of light beams in nonlinear bulk media h
raised an increasing interest connected with the recent de
opment of high-power laser sources@1,2#. Among the vari-
ous nonlinear effects induced by the response of a nonlin
medium, the self-trapping and self-focusing of intense bea
have been widely investigated since the 1960s. Self-trap
beams evolving in three spatial dimensions are well kno
to be unstable within an ideal Kerr material and to break
into a train of three-dimensional~3D! solitary waves@3,4#. In
the absence of saturation, the resulting filaments self-fo
until they collapse at a finite propagation distance, wh
their individual power exceeds a critical value such that
nonlinear effects continuously dominate over the natural
persion of the wave@5#. This critical power is usually com
puted in the framework of the paraxial cubic model@3#,
based on the 2D nonlinear Schro¨dinger~NLS! equation with
two transverse dimensions and one longitudinal dimens
for the propagation axis. The dimension numberD here cor-
responds to the one conventionally associated with the tr
verse plane (D52), where wave diffraction takes plac
Nevertheless, it can include a third dimension (D53) to
account for the variations of the wave field with respect t
retarded time variable, when the group velocity dispers
~GVD! of the wave is retained. In a physical medium, on
self-focusing is initiated, the local wave intensity starts
increase and collapse is arrested by saturation of the
response, which allows for the formation of stationary so
tary waves. In the presence of anomalous GVD, these s
tary waves form robust ‘‘optical bullets’’@6#, which consist
of self-focused beamlets relaxing asymptotically to sta
steady states.

Recently, the topic of interacting light waves opened
wide area of investigations: For instance, attraction and
sion of in-phase optical bright spatial solitons were display
numerically@7# and experimentally@8#. From the theoretica
PRE 581063-651X/98/58~5!/6606~20!/$15.00
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side, analogous behaviors based on nonlinearities promo
wave collapse were revealed by numerical integrations of
cubic Schro¨dinger equation@9# and analytical argument
clearing them up were displayed in@10#, when several beam
lets compose the solution to one NLS equation. In particu
according to their initial powers and separation distance,
in-phase Gaussian beamlets symmetrically located at dif
ent centroids were shown to spread out, self-focus with
mutual correlation, or fuse into a central self-focusing lob
In this configuration, the coalescence mechanism is then
tiated when the two beamlets are mutually separated b
distance less than a critical value depending on their in
vidual power and when the latter is lying betweenNcrit/4 and
Ncrit . Here Ncrit54p denotes the threshold power for se
focusing of one Gaussian beam with a nonlinearity coe
cient equal to unity. This critical thresholdNcrit54p is
slightly larger than the well-known self-focusing powerNc
511.68 that a solution to the 2D NLS equation must initia
exceed to collapse. Furthermore, by virtue of the conse
tion of power and the Hamiltonian, two initially separate
beamlets with ap-phase difference were shown to nev
amalgamate into a single structure. These different behav
were supported by numerical simulations.

Among the numerous physical processes dealing with
self-focusing of coupled light waves, we can here ment
the self-excitation of waves with different polarizations in
nonlinear medium. From the pioneering works by Berkho
and Zakharov@11# and Manakov@12#, it is well established
that, unlike circularly polarized beams, a wave having
arbitrarily varying polarization decomposes into two wav
with opposite circular polarizations in an isotropic nongyr
tropic medium. Under the assumption that the material’s
fractive index changes linearly with the optical intensity~the
so-called Kerr effect!, the slowly varying complex envelope
of the resulting waves obey in that case two distinct, non
early coupled nonlinear Schro¨dinger equations in the form

i ]zE11¹W '
2 E11~L11uE1u21L21uE2u2!E150, ~1!
6606 © 1998 The American Physical Society
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i ]zE21¹W '
2 E21~L12uE1u21L22uE2u2!E250, ~2!

which can easily be derived by assuming the space and
envelope approximations. Due to its vectorial nature, a w

with electric field EW 5E1cWR1E2cWL ~cWR and cWL denote the
complex unit vectors corresponding to orthogonal polari
tions! is then stratified into beams with a constant spec
polarization of radiation in such a way that the cubic medi
promotes the formation of waveguide channels. In the ab
equations, the first term accounts for the propagation of

light electric field envelopesEW 1(rW' ,z) and EW 2(rW' ,z) along
the z axis, expressed in the frame moving with the gro
velocity of the beam. The second term describes the tra
verse diffraction of the wave components and the third o
represents the cubic nonlinearity induced by the medium
sponse with nonlinearity coefficientsLab (a,b51,2). Here

the transverse Laplacian reads¹W '
2 []x

21]y
2 for a diffraction

plane spanned by the radiusrW'5(x,y). For technical conve-
nience, this diffraction plane may formally be extended toD
transverse dimensions, including a temporal dimension to
count for anomalous GVD.

Equations~1! and~2! generally apply to incoherent wave
with the same central frequency, for which the intensities
simply added, so that the nonlinearity coefficients may
identical. They can be extended to an infinite set of coup
nonlinear Schro¨dinger equations and serve, for instance, a
theoretical model describing the self-trapping and s
focusing of incoherent light beams with low-intensity pr
files in nonsaturating biased photorefractives@13#. In the
one-dimensional case (D51), the formation of solitons was
earlier discovered by Manakov@12# on the basis of the sam
equations. The properties of the soliton solutions for t
model followed from a direct application of the inverse sc
tering transform~IST! techniques and the potential interse
tions of several wave forms, involving more than two solit
solutions, were also investigated. Let us here recall that
integration of system~1! through the IST method can b
performed under specific conditions involving a low dime
sionality (D,2) and severe constraints on the nonlinear
coefficients. From a physical viewpoint, these constra
amount to imposing that the ratio between the component
self- and cross-phase modulations intervening in the co
cientsLab’s must be equal to the unity, while the self-pha
modulation components need to be identical for the two
larizations. In addition, four-wave mixing~FWM! contribu-
tions that parametrically mix wave components must be z
This condition can easily be fulfilled if the two orthogonal
polarized beams are incoherent so as to average the F
terms to zero, which can be made possible in, e.g.,
AlGaAs planar waveguide@14#. In connection with this
topic, the formation and stability of solitons in birefringe
materials, such as single-mode optical fibers, were num
cally investigated since linear birefringence leads to splitt
an input pulse into two polarization modes. In the prese
of the Kerr nonlinearity, it was observed that the fraction
pulses in each of the two polarizations may trap each o
and move together provided the soliton amplitudes excee
threshold value. Without FWM, the two partial pulses lo
together and travel as one unit when their amplitude is
tially equal and above some threshold whose size incre
e
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with birefringence@15,16#. In the presence of FWM terms
families of soliton solutions can be constructed for birefr
gent optical fibers by taking radiation processes into acco
which was shown to qualitatively influence the soliton so
tions @17#. Coupled wave equations describing compara
phenomena were also derived for monomode step-index
tical fibers in@18#.

In the previous investigations, finding exact soliton so
tions and identifying the role of radiation for given initia
waves are possible because the propagation equation
volve a transverse diffraction plane with low-dimensio
numberD51. In this situation only, the techniques of in
verse scattering transform can be applied to nonlinear i
grable systems, such that not only the emergence of soli
but also the radiative contributions can be quantified. As
alternative method, the so-called variational approach, or
erage Lagrangian method, in which the solution is appro
mated by a trial solution~ansatz! with a sech or Gaussian tes
function, may supply relatively good results for describi
the localized core of the solution@19#. However, it never
describes the amount of power dissipated through radiat
which can play a significant role during the soliton evolutio
Recently, radiative corrections to solutions of the stand
variational approach were proposed by Kath and Smyth@20#
in order to remove the discrepancies introduced by this
proximation method in the treatment of the 1D NLS equat
for a single wave. They indeed showed that by suppleme
ing az-dependent chirped-sech core with radiative losses,
soliton core could attain a mean size with steady amplitu
whereas these quantities, when they are basically comp
from the variational method, periodically oscillate around t
mean soliton size. Without such radiative corrections,
standard variational approach was also applied to the
version of the coupled NLS equations~1! and ~2! with an
ansatz containing a finite number of dynamical paramet
which included the amplitude, the size, the frequency ch
the velocity, and an arbitrary phase in sech-type soliton
lutions @21,22#. Through this method, it was speculated th
bound states can emerge from identical, symmetrically
cated pulses, when their initial velocity is not too large, a
form a unique bound state for which the soliton widths a
positions oscillate around mean values. Also, in spite of d
crepancies connected with radiation emission, both nume
and average Lagrangian formalism displayed evidence
solitons, with initial velocitiesv0 sufficiently large (v0
.ve) to overcome a mutual attraction, could escape fr
each other and become well separated asymptotically.
critical velocityve permitting this escape process was sho
to increase with the soliton amplitude.

On the other hand, comparable investigations were p
formed by McKinstrie and co-workers@23,24# in the context
of two light waves propagating in a plasma beat-wave ac
erator, with emphasis on the physical configurationD52.
This specific situation is in analogy with the former equ
tions since the scalar envelopes of such light waves evo
according to the coupled NLS equations

i ] tAa1¹W 2Aa1QaAa50. ~3!

Here the time variablet plays the role of the propagatio
distance z, compared with Eqs.~1! and ~2!, and Qa
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[]Q/]uAau2 denotes the derivative of a potential functionQ
with respect to theath wave intensity. For a weakly relativ
istic electron quiver velocity, two light waves are expected
couple through the nonlinear potential

Q5 1
2 (

a,b51

2

LabuAau2uAbu2, ~4!

where the values of the nonlinearity coefficients depend
the polarization state of the waves. When assuming a circ
polarization and initially scalar wave fields, the original sy
tem ~3! can readily be extended to the nonlinear coupling
n (n>2) scalar wave envelopes. For two waves only,
nonlinearity coefficients are symmetric with the valuesL11
5L2251/8 for the self-interaction components and w
L125L2151/4 for the crossed components. Studying t
modulational instability of plane waves in the formAa(xW ,t)
5Aa

0exp@i((bLabuAbu2)t# by periodic perturbations, McKin-
strie and Bingham@23# established the growth rate of th
instability of n coupled waves

ga
2~kW !5kj

2~2Da2kj
2!, ~5!

wherekj ( j 51,...,D) denotes the components of the wa
vector carried by the perturbation and theDa’s are the eigen-
values of the stability matrix

S L11uA1u2

L21uA2A1u
¯

Ln1uAnA1u

L12uA1A2u
L22uA2u2

¯

Ln2uAnA2u

¯

¯

¯

¯

L1nuA1Anu
L2nuA2Anu

¯

LnnuAnu2
D . ~6!

These driving termsDa depend on a symmetric combinatio
of the initial amplitudes of both waves and for each spa
eigenfunction of the perturbative modes there is a pair
temporal growth ratesga

2(kW ) associated with each eigenvalu
of the stability matrix entering the linearized problem of E
~3!. In particular, for two waves,Da reads@23#

2D65~L11uA1u21L22uA2u2!

6A~L11uA1u22L22uA2u2!214L12L21uA1A2u2.

~7!

Thus, whenever the system of coupled waves is unst
~which is ensured forL12

2 .uL11L22u with L125L21!, the
maximal growth rate of the instability is given bygmax
5D1 and corresponds to the optimal wave numberkmax

5AD1 for the most unstable perturbative mode. Note t
from Eq.~7! the nonlinear coupling of two waves contribut
to enhance their instability since the coupling term in Eq.~7!
participates in a positive amount, making the maxim
growth rate larger than the growth rate of either wave alo

Furthermore, nonlinearly coupled waves were stud
from the viewpoint of their mutual interactions and se
focusing dynamics@24#. Regarding the occurrence of co
lapse, general results based on the main invariants of
system~3! and on virial-type arguments allowed for bringin
to light an entrainment mechanism between two Gaus
waves being located at different centroids. Conditions
self-focusing of two superimposed waves were detailed
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Ref. @24# ~see also the more recent investigation@25#!, while
for initially separated waves, a critical distance between t
identical waves was identified as the minimal distance
yond which they may behave independently of one anoth
Below this critical distance, when the power of each wave
larger than the third of the critical power for self-focusing f
one Gaussian beam and smaller than this critical po
threshold itself, two identical waves can attract each oth
This entrainment mechanism is comparable to that of t
beamlets composing one self-focusing beam governed b
single NLS equation@10#. Although originally discovered in
Ref. @24#, wave amalgamation, consisting in the coalesce
of two waves fusing into a self-focusing central lobe, w
revealed for Gaussian beams with a small separation dist
between their centroids. Therefore, this interaction patt
still deserves to be investigated when coupled waves are
tially well separated from one another by at least one w
diameter.

The aim of this paper is to generalize the previous res
to the coupling ofn (n>2) NLS wave packets in a cubi
medium and to determine their regimes of mutual coal
cence. We first recall in Sec. II the main properties of c
lapsing solutions for NLS equations with multiple wav
components and we derive some criteria of the blow-up
coalescence of wave envelopes in terms of a critical sep
tion distance depending on their individual powers. Th
yields general results for two or more light pulses, inferr
from relations governing the centroids and the mean squ
radius of the waves. In Sec. III the approximate evolution
two light waves is described by means of a variational
proach applied to Gaussian beams. The shape of the attr
attached to the self-attraction of beams modeled with Ga
sians and sech functions is also discussed. In Sec. IV
instability criterion, derived from the so-called Vakhitov
Kolokolov criterion of stability for solitonlike bound states
is constructed by using straightforward perturbative te
niques around the soliton states. This result emphasizes
for cubic nonlinearities bound states of coupled NLS eq
tions are unstable whenever the space dimension numb
greater than or equal to the critical value 2, which is cons
tent with the property following which solutions to this sy
tem can blow up in finite time whenD>2. Finally, in Sec. V
the competition between the modulational instability
coupled waves, which tends to break them transversally d
ing the early stage of their quasilinear evolution, and th
natural tendency to form one self-focusing structure is d
cussed in terms of typical time scales along which the p
duction of small-sized cells is favored. To conclude th
work, the dynamics of counter- and copropagating beams
also briefly compared.

II. GENERAL RESULTS

To start with, we consider light waves that propagate w
a constant polarization in a bulk cubic medium following t
model equations~3!. For a suitable optical material, the sat
ration effects in the form, e.g.,Qa5LuAau2/(11auAau2) for
one wave@26,27#, wherea is the saturation coefficient, ar
expected to limit the singular growth of the wave and to fo
steady bullets in the medium. In the present investigati
however, we will ignore these saturation effects by forma
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taking the limita→0 and permit the waves to collapse free
in self-focusing regimes. Although ‘‘unphysical,’’
collapse-type singularity emerging in the medium will ena
us to stress more the localization mechanism of the wa
during their self-focusing stage. Thus the analysis prese
below rather concerns waves growing in this stage be
saturation becomes efficient.

A. Case of a single NLS wave

We first recall some basic properties attached to the n
linear Schro¨dinger equation for one wave whose elect
field envelopeu(xW ,t) is henceforth assumed to be scalar a
governed by

i ] tu1¹W 2u1Luuu2u50. ~8!

The positive constantL represents the nonlinearity coeffi
cient and the time variablet has been chosen as a gene
evolution variable: It can denote a true time variablet in the
scope of plasma physics@24#, or a propagation distancez as
well, when dealing with paraxial self-focusing of light@1,2#.

In this case, the Laplacian operator¹W 2[¹W '
2 corresponds to

the transverse diffraction of the waves taking place in a pl
of vector xW[rW' . For technical convenience, we will som
times employ the standard notations for denoting theLp

norms

i f ip[S E u f updxW D 1/p

⇒i f ip
p[E u f updxW , ~9!

assuming any functionf being Lp integrable. Also, in con-
nection with the Cauchy problem associated with Eq.~8!, we
shall henceforth suppose that the wave functionu(xW ,t)
evolves from initial datau(xW ,0)[u0(xW ) belonging to the

Sobolev spaceH1 with norm iuiH15(iui2
21i¹W ui2

2)1/2,
which invites us to search for solutionsu localized in the
transverse plane and decaying to zero at infinity.

Two main integrals of motion are related to the solutio
of Eq. ~8!, namely, the dimensionless power

N[iui2
2 ~10!

and the Hamiltonian

H[i¹W ui2
22

L

2
iui4

4, ~11!

from which Eq. ~8! can be derived through the Hamilto
formulation i ] tu5dH/du* ~the asterisk means comple
conjugate!. In addition, Eq.~8! constitutes a Lagrangian sys
tem deriving from the Lagrangian integral

L5
i

2 E ~u* ] tu2u] tu* !dxW2H, ~12!

from which a fundamental relation governing the me
square radius of solutionsu can be established. This mea
square radius, often called the virial integral, readsI (t)
[Š(xW2^xW &)2

‹, where the angular brackets refer to the me
value of any functionf (xW ) defined by the integral̂ f (xW )&
[N21* f (xW )uuu2dxW . The relation for the evolution of this
es
ed
re

n-

d

l

e

s

n

virial integral can be directly computed by first multiplyin
Eq. ~8! by x2u* (x5uxW u) and selecting the imaginary part o
the space-integrated result and second by integrating

space the real part of Eq.~8! multiplied by (xW•¹W u* ). Taking
the time derivative of the first relation finally yields@5#

] t
2I ~ t !5

4

N H 2H01
L

2
~22D !iui4

4J , H0[H2
N

4
^xẆ &2,

~13!

where^xẆ &[] t^xW & is the velocity of the center of mass of th

localized wave packet. This velocity^xẆ & is in turn governed

by the relation] t^xW &5PW /N, wherePW [2 Im *(u*¹W u)dxW is the
wave momentum. From the identity~13!, one then infers that
the mean square radius of a given localized wave tend
zero in a finite time, henceforth denoted bytc,1`, under
some specific conditions. Among those, the most well kno
ones are the condition of multidimensionalityD>2, and the
requirement of having negative-energy states,H0,0. Al-
though other conditions involving nonzero initial dive
gences@] tI (0),0# of the wave fields are available in th
current literature@5,28#, H0,0, meaning that nonlinearitie
continuously dominate over wave dispersion, applies to
initial focusing shape of the waves and we shall retain it o
for the sake of simplicity. So negative-energy wave form
centered on the origin with a zero velocity for their center
mass have a typical transversal scale tending to zerot
→tc providedD>2. In that case, the virial identity simply
reduces to the inequality

] t
2I ~ t !<

8H

N
, I ~ t ![

ixWui2
2

N
. ~14!

From the vanishingI (t)→0, one then deduces that theL2

norm of the gradient ofu must tend to infinity by virtue of
the inequality@28#

iui2
2<

2

D
i¹W ui2ixWui2 , ~15!

which follows from a straightforward estimate of the normN
integrated by part. In this limit, theL4 norm of u also di-
verges in turn because of the constancy ofH and the wave
blows up with a maximum ofuuu growing to infinity at the
center@29#. These mathematical properties thereby reflect
singular nature of the collapse process originating from
vanishing ofI (t). Let us recall in this respect that a wav

blow-up, characterized by the divergencei¹W ui2
2→1`, gen-

erally takes place before the complete vanishing of the vi
integral I (t), which yields only a maximum collapse tim
@28#. Indeed, wave blow-up occurs before the total vanish
of I (t) because only a finite amount of power is captur
from N in the collapse process. For instance, in the so-ca
critical caseD52, this finite amount of power is nothing bu
the critical power for self-focusingNc /L with Nc511.68
.11.7, which corresponds to the smallestL2 norm obtain-
able from the radially symmetric stationary solutio
u(xW ,t)5eitf(uxW u) of Eq. ~8!. The solution corresponding to
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this norm is even, positive, and unique andNc enters the
following bound from beneath the Hamiltonian:

H>i¹W ui2
2S 12

L

Nc
ND , ~16!

which is established after using the Sobolev inequalityiui4
4

<Ci¹W ui2
2iui2

2 with the best constantCbest52/Nc @30#. As a
wave collapse is characterized by the divergence of the
dient norm of the envelopeu, the requirementN.Nc /L thus
arises as anecessary conditionfor initiating the collapse.

B. Case of one NLS wave with several distinct components

Before discussing the interaction of copropagating non
ear waves, we first investigate the case when one solu
u(xW ,t) of Eq. ~8! is composed byn distinct ‘‘beamlets’’ ~or
‘‘cells’’ ! initially well separated and each exhibiting a max
mum located at the centroid̂xWa(t)& (a51,...,n). Thus solu-
tions to Eq.~8! can be sought under the form

u~xW ,t !5 (
a51

n

ua„xW2^xWa~ t !&,t…, ~17!

where the discrete centers of mass^xWa(t)& are functions of
time. For simplicity, we consider the simplest configurati
dealing with two beamlets, i.e.,u(xW ,t)5u1„xW2^xW1(t)&,t…
1u2„xW2^xW2(t)&,t…. Only few analytical results can be in
ferred in such a case, apart from those deduced from
initial data themselves: By computing the total invariantsN
andH in terms of their ‘‘free’’ counterparts

Na[iuai2
2, Ha[i¹W uai2

22
L

2
iuai4

4 ~a51,2!,

~18!

supplemented by their respective interaction contribution
is always possible from the values ofN andH estimated with
u0(xW )[u(xW ,0) to speculate on the influence of their intera
tion contributions. We can indeed deduce whether the wa
will either behave independently of each other or stron
interact mutually, depending on the size of their initial sep
ration distanced(0)[u^xW1(0)&2^xW2(0)&u occurring in these
interaction terms. For Gaussian beamlets, the interac
terms ofH andN exponentially decrease withd~0! in such a
way that entrainment and amalgamation between two l
cells into one central lobe can be promoted whend~0! is
smaller than a critical value ensuring thatH remains of the
orderH„d(0)50…. In the following we give some necessa
conditions on threshold powers, above which two separa
beamlets can coalesce and collapse in finite time whenD
52. Plugging the decompositionu5u11u2 into the integral
N, we share the different contributions of the latter as

N5N11N212 ReE ~u1u2* !dxW<N11N212E uu1uuu2udxW

~19!

and apply the Schwarz inequality together with the obvio
estimate 2ab<a21b2 to finally get

N<2~N11N2!. ~20!
a-
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s

By means of the bound~16! and the virial inequality~14!, we
therefore deduce that light cells with a zero initial velocity
their respective centers of mass can collapse under the
essary requirement 2(N11N2).Nc /L. Thus, for two iden-
tical beamlets (N15N2), each of them must possess an i
dividual power above the threshold

N15N2.Nc/4L ~21!

to participate in the blow-up of the whole beam. In the o
posite case withN15N2,Nc/4L, the Hamiltonian integral
H in Eq. ~16! must be positive and the beam simply sprea
out with two dispersing components. The bound~21! particu-
larly applies to two superimposed cells witĥxW1&5^xW2&
@d(0)50#. It then arises as the minimum power that ea
beamlet must engage in the best possible situation to fa
the collapse, i.e., when both light cells participate in the c
lapse process by overlapping completely at one point in
transverse diffraction plane.

Let us now investigate the case of several~n! distinct
beamlets that are well separated and identified by their
spective maxima located at the centroids^xWa(t)& (a
51,...,n). In this situation, the whole solution has the gene
form ~17! and the total invariantN is expressed as

N5E ~u11u21¯1un!~u1* 1u2* 1¯1un* !dxW

<E n~ uu1u21uu2u21¯1uunu2!dxW5n (
a51

n

iuai2
2,

~22!

after using Chebyshev’s inequality. Thus, in view of E
~16!, N must exceedNc /L for initiating a wave blow-up and,
consequently, we obtain the necessary condition for s
focusing (a51

n Na.Nc /nL. So n identical beamlets mus
each possess an individual power above the critical thres

N15N25¯5Nn.Nc /n2L. ~23!

Note that the condition~23! is not sufficient to guarantee tha
the waves systematically undergo a collapse. Promotin
wave collapse also depends on the distribution of the ini
wave forms and on the resultant sign of the total Hamilton
intervening in the virial relation~13!. However, from Eq.
~22!, it can be inferred that the constraint~23! on beamlet
power, which yields a minimum power for reaching se
focusing regimes, can be lowered by increasing the num
of beams: An infinity (n→1`) of equal beamlets with a
very weak~almost zero! individual power could in principle
promote wave collapse by superimposing efficiently their
tensity distributions. This property can be transposed fon
initially steady-state Gaussian beamlets composing the in
beam shape

u~xW ,0!5 (
a51

n S Na

pra
2 D 1/2

expF2
@xW2^xWa~0!&#2

2ra
2 1 icaG ,

~24!
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all of them being superimposed on the origin of coordina

with ^xWa(0)&50W . Herera is a measure of the mean radius
each Gaussian component andca an arbitrary constant phas
factor. Regarding, for simplicity, light filaments with equ
radius (ra5r) and zero phase (ca50), the total power
contained within the entire beam readsN5((a51

n ANa)2,
while the Hamiltonian H expands as H5(N/r2)(1
2LN/4p). The occurrence of collapse is then possible
N.4p/L, ensuring therebyH,0. Thus, for beamlets with
equal power, we get the condition for eachath beamlet:
Na.4p/Ln2, which is compatible with Eq.~23!. Collapse
may then occur in this configuration for an infinite number
beamlets (n→1`), each possessing a weak power (Na
→0). For two Gaussian beamlets only, the necessary co
tion for promoting a wave collapse turns out to readN1
5N2>Ncrit/4L5p/L, as discovered in@10#.

This result can be generalized to beamlets having an
bitrary initial shapefa(xW ,0) and entering the wave functio
u(xW ,0)5(a51

n ANafa(xW ,0). The functionfa can be chosen
as, e.g., a sech function for dealing with a critical thresh
power closer to 11.7 than 4p whenL51 @28#. Considering
initially superimposed beamlets,N is expressed asN
5((a51

n ANa)2ifai2
2 andH can be written as

H5S (
a51

n

ANaD 2

i¹W fai2
2

3S 12

LS (
a51

n

ANaD 2

2

ifai4
4

i¹W fai2
2
D .

Hence the constraint of, e.g., negativeH for collapse implies
that the power in each beamlet must together satisfy

S (
a51

n

ANaD 2

.K[
2i¹W fai2

2

Lifai4
4 , ~25!

which yieldsNa.K/n2 for beamlets with equal power~K
54p/L in the Gaussian case!.

C. Case of several copropagating waves

On the basis of the model equations~3! and ~4!, we now
investigate the dynamical properties ofn>2 copropagating
waves, with a particular attention to the possibilities of ma
ing them merge and self-focus in finite time. To this aim,
rewrite the set of equations~3!, defined with the potentia
function Q5 1

2 (a,bLabuuau2uubu2, in the generic form

i ] tua1¹W 2ua1(
b

Labuubu2ua50, ~26!

where( with indicesa and/orb refers to a summation ove
1<a,b<n ~for instance(a,b[(a51

n (b51
n !. Unlike the pre-

ceding context for which only the total powerN5i(auai2
2

was preserved, the system~26! now conserves the individua
powersNa[iuai2

2 separately and the total Hamiltonian
s

r

f

i-

r-

d

-

H5(
a

i¹W uai2
22(

a,b

Lab

2
iuaubi2

2. ~27!

This directly follows from multiplying Eq.~26! by ] tua* and
integrating over space the real part of the result, after su
ming up over the entire set of indices~a,b!. Conservation of
H, proceeding from the conservation law] tH50, requires
one to assume symmetric nonlinearity coefficients satisfy
Lab5Lba for aÞb, which will be done in what follows. In
that case, we can derive a dynamical relation for the to
center of masŝ xW &5N21*xW(auuau2dxWN[(aiuai2

2. From
straightforward algebra, one easily obtains

] tE xW uuau2dxW52 Im E ~ua* ¹W ua!dxW ,

~28!

] tF Im E ~ua¹W ua* !dxW G52E uuau2¹W (
b

Labuubu2dxW ,

from which the center of mass for theath wave ^xWa(t)&
[Na

21*xW uuau2dxW is found to be governed by the relation

] t
2^xWa&5

2

Na
E uuau2¹W (

bÞa
Labuubu2dxW

5
2

Na
E uuau2¹W QadxW . ~29!

Therefore, the total center of mass obeys the identities

] t^xW &5
PW

N
, PW 52 Im (

a
E ~ua* ¹W ua!dxW ,

~30!

] t
2N^xW &[] t

2(
a

Na^xWa&50W ,

which leads to the conservation of the total wave moment

PW (t)5PW (0). If the initial data ensurePW 50W , one has^xẆ &
50 ~as for, e.g., Gaussians without space-varying phase! and

^xW (t)&5(aNa^xWa(t)&/N5^xW (0)& is fixed at every time.
Consequently, for two equal waves with a total center

mass located at the origin, the separation vectordW (t)

5^xW1(t)&2^xW2(t)& between their respective centroids w

simply be given bydW (t)52^xW1(t)&. Furthermore, the wave
identified by the subscript 1 has a center of mass evolving

] t
2^xW1~ t !&5

2L12

N1
E uu1u2¹W uu2u2dxW , ~31!

where the right-hand side corresponds to the flux induced
wave 2 from the crossed contributions of the nonlinear
By repeating the computational stages in Sec. II A, we c
moreover establish a virial-type identity for the mean squ
radius
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I ~ t ![
1

N E ~xW2^xW &!2(
a

uuau2dxW ~32!

consisting of a generalized form of Eq.~13!, namely ~see
also @24#!,

] t
2I ~ t !5

4

N H 2H01E F2Q1DS Q2(
a

Qauuau2D GdxW J
5

4

N H 2H01S 22D

2 D(
a,b

Labiuaubi2
2J , ~33!

with H0[H2 1
4 PW 2/N. Expression~33! reduces to the con

ventional form] t
2I (t)58H/N in the 2D case for waves car

rying a zero momentum. Henceforth regarding this criti
caseD52, we use both Schwarz and Sobolev inequalities
bound the nonlinear potential ofH with

iuaubi2
2< 1

2 iuai4
41 1

2 iubi4
4<

C

2
i¹W uai2

2Na1
C

2
i¹W ubi2

2Nb ,

~34!

which yields

H> (
a51

n

i¹W uai2
2S 12 (

b51

n

Lab

Na

Nc
D , ~35!

after making use of the best constantCbest52/Nc @30# to-
gether with the symmetryLab5Lba . From the above esti
mate, we deduce that initial states with energyH,0 pro-
mote the collapse ofall the wave components since the to
virial integral consists of the direct sum of positive integra

I a(t)5N21*(xW2^xW &)2uuau2dxW , implying I a(t)→0 for ev-
ery a51,...,n in the limit I (t)→0. Thus, for a total center o
mass being the origin of coordinates, this property implies

turn that each wave component blows up withi¹W uai2
→1` by virtue of the inequality~15!. Self-consistently with
Eq. ~35!, promoting wave collapse requiresa priori that the
partial norms must be above a certain threshold, namely

Na.
Nc

(
b

Lab

~b51,...,n!. ~36!

In the case of two coupled identical waves, we simply
N15N2.Nc85Nc /(L111L12), and special interaction re
gimes can be expected, for which waves amalgamate
one collapsing lobe as their total mean square radius, inc
ing their mutual separation distance, decreases to zer
finite time.

To illustrate the above results, let us consider in-ph
Gaussian waves with initial shapes

ua~xW ,0!5A Na

pra
2 expF2

@xW2^xWa~0!&#2

2ra
2 G ~37!

and exhibiting no initial divergence@] tI (0)50# and no ini-

tial velocity @] t^xWa(0)&50W #. For such initial envelopes,H
expands as
l
o

l

n

t

to
d-
in

e

H5 (
a51

n
Na

ra
2 F12 (

b51

n ra
2LabNb

2p~ra
21rb

2 !
e2dab

2
~0!/~ra

2
1rb

2
!G ,

~38!

with dab(0)[u^xWa(0)&2^xWb(0)&u. Assuming now that the
waves possess identical transverse radii (ra5rb[r), H re-
duces to

H5 (
a51

n
Na

r2 F12(
b

LabNb

4p
e2dab

2
~0!/2r2G . ~39!

By using (Na2Nb)2>0, we deduce that each wave compo
ing a negative-energy state will self-focus provided th
power exceeds the critical threshold

Na~dÞ0!.
4p

(
b

Labe2dab
2

~0!/2r2
, ~40!

which is always larger than the bound in Eq.~36!. Note that
the value of the bound from below in Eq.~40! decreases al
the more as the mutual separation distancedab(0) is small.
In particular, superimposed waves withdab(0)50 will to-
gether collapse if and only if their partial powers exceed
threshold value

Na~d50!.Nc
0[

4p

(
b

Lab

.
Nc

(
b

Lab

. ~41!

On the other hand, keeping in mind thatdaa(0)5dbb(0)
50, one can observe that in the limit of well-separated str
tures @dab(0)→1` for aÞb# H is given by the sum of
‘‘free’’ Hamiltonians H5(aHa5(a(Na /r2)(1
2LaaNa/4p), from which we recover the constraint on co
lapse thresholdsNa.Nc

f [Ncrit /Laa for isolated Gaussians
Now we denote byd~0! the initial distance separating th

centroids between two neighboring waves; thusd(0)
[dab(0) for aÞb. We search for a critical distancedc such
that ford(0).dc the waves can be expected to evolve ind
pendently of each other, due to the exponential decreas
the interaction term ofH. To this aim, we formally rewrite
this integral of motion asH5(aHa1H int(d)5H(d50)
1DH(d). We conjecture that a strong interaction betwe
waves will take place if d~0! is such that uH(0)u
@uDH„d(0)…u. Conversely, waves will behave with a neg
gible correlation if the initial separation distanced~0! satis-
fies u(aHau@uH int„d(0)…u. The critical separation distanc
below which waves can interact is then given by the zeros
H and it is determined from the general estimate

(
aÞb

LabNaNbe2dc
2/2r2

5(
a

Nau4p2LaaNau. ~42!

For two wavesdc thus reads

dc5rF 2 lnU 2N1N2L12

(
a51,2

Na~4p2LaaNa!UG 1/2

, ~43!
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with L125L21. For equal waves withL115L22, the expres-
sion for dc simplifies into

dc5rF2 lnUNL12/L11

2Nc
f 2N UG1/2

, ~44!

with N5N11N252Na and 2Nc
f 52Ncrit /L11. This result

agrees with McKinstrie and Russel’s result@up to a normal-
ization factor 1

2 in front of Laplacians of Eq.~26!; see Eq.
~12! in Ref. @24##, as 2Nc

f is equal to 2Ncrit /L1156Nc
0,

where Nc
05Ncrit /(L111L12) is the power threshold tha

each of two superimposed waves must exceed to provoke
collapse of the whole wave packet. ChoosingL1151/8 and
L1251/4, one thus getsNc

f 532p and Nc
0532p/3. In other

situations involvingL11.L12, a nontrivial critical separa-
tion distancedc exists for high-power waves (N.2Nc

f ) as
long asN15N2 lies below the finite limitNmax54p/(L11
2L12) only, whereasNmax51` whenL11<L12. From the
above results and employing the virial properties of the N
equations, we can then deduce three characteristic reg
for the wave evolution.

~i! If N15N2,Nc
0, for any value ofd~0!, the waves con-

tain too a weak power to maintain their localized shapes
they spread out asymptotically with a positive Hamiltonia

~ii ! If Nc
0,N15N2,Nc

f , both waves can merge, but the
asymptotically disperse withH.0 wheneverd(0).dc . In
the opposite situationd(0)<dc , wave components fuse an
form a self-focusing central lobe withH,0 andI (t)→0.

~iii ! If Nc
f ,N15N2,Nmax, both waves, each havingHa

,0, generally self-focus independently with an individu
power already exceeding the self-focusing threshold for
collapse of a single Gaussian wave. However, if they
only separated initially withd(0),dc , they may still amal-
gamate into a central lobe that will collapse in finite time

The previous analysis performed for two waves can ea
be extended to the mutual interaction of a larger, but fin
number of waves between their nearest neighbors~finiteness
here prevents an infinite number of beams from mutua
balancing their interaction potentials!. For identical waves
with N15N25¯5Nn and equally separated by the sam
distanced~0! on a line, the interacting term ofH @Eq. ~39!#
containing the exponentially decreasing contribution expa
as

1

4p (
b51,...,nÞa

LabNbe2dab
2

~0!/2r2

5
1

4p
@La1N1e2da1

2
~0!/2r2

1La2N2e2da2
2

~0!/2r2
1¯1LanNne2dan

2
~0!/2r2

#,

~45!

with dab
2 (0)[@(a2b)d(0)#2. Let us thus assume that th

ath wave refers neither to the first wave nor thenth one. For
symmetric nonlinear coefficientsLaa5Lbb and Lab
5Lba (aÞb) with comparable magnitude (Laa115L12),
we get
he

es

d
.

l
e
e

ly
,

y

s

1

4p (
bÞa

LabNbe2dab
2

~0!/2r2
.

1

4p
@2L12N1e2d2~0!/2r2

#

1O~L13N1e22d2~0!/r2
!

~46!

for well-separated waves initially satisfyingd(0).2r ~see,
e.g., Ref.@10#!. Thus nonlinear interaction regimes betwe
coupled self-focusing beams can be reduced to the prob
of the interaction of three waves on a line, i.e., theath wave
with two lateral ones. The basin of attraction for mutual e
trainment of one light spot surrounded by two equal oth
on a line then decreases whend~0! is above a critical value
dc whose expression is the same as in Eq.~44! with L12
replaced by 2L12. Similarly, it could be checked that th
interaction regimes between light pulses distributed on
plane lattice reduce to those of oneath wave with its four
nearest neighbors. Forn2 spots regularly spaced on a lattic
in the transverse plane, the interaction between theath wave
with respect to its four nearest neighbors increases by a
tor 2 compared to spots spaced on a line, so that the valu
dc is the same as in Eq.~44!, but with a crossed nonlinearity
coefficientL12 multiplied by 4. From these arguments, w
easily infer that the critical distance below which waves c
coalesce increases with the number of waves and their
metrical space.

Besides, the formation of a central lobe and its ultima
self-focusing fully develops in the medium before the fi
zero tc

max of the total virial integralI (t). After this instant,
the set composed by then NLS solutionsua (a51,...,n) can
no longer exist. In the two-dimensional case, Eq.~33! leads
to

I ~ t !5
4Ht2

N
1@] tI ~0!#t1I ~0!, ~47!

with H defined by Eq.~39!. Assuming thenH,0 for Gauss-
ian waves with no initial divergence, the maximal time f
the blow-up of all waves is given by

tc
max~d!

5F pNI~0!r2

(
a

NaH(
b

LabNbexp$2dab
2 ~0!/2r2%24pJ G

1/2

,1`. ~48!

With I (0)5r21(aNa^xWa(0)&2/N, we finally deduce that
the maximum collapse moment increases with the initial d
tance separating the coordinate of the wave centroid from
origin and when the separation distance between waves
creases@note that for identical and symmetrical waves o

has u^xWa(0)&u5dab(0)/2#. Thus the collapse~or self-
focusing! time may be ‘‘tuned’’ for experimental conve
nience by fixing in a appropriate way:~i! the number of light
spots,~ii ! their respective incident powers, and~iii ! their lo-
cation in space. A plot ofdc versusN and another one illus-
trating tc

max versusd~0! andN5nNa have been given in Fig
1 for different powers in the case of two waves (n52) with
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identical individual powers. Even though the estimate~48! of
the collapse time consists only of the maximal instant
blow-up, it is finally worth noticing that an empirical est
mate for the time taken by the coalescence of waves it
may be yielded byDtcoalesc'tc

max(d)2tc
max(d50), when one

keeps in mind that overlapped waves should promote
fastest collapse process.

III. VARIATIONAL APPROACH
TO INTERACTING WAVES

To investigate the dynamics of mutually interactin
beams, we perform a variational approach~the so-called av-
erage Lagrangian method! allowing us to depict the main
tendencies of coupled light pulses. We use the property
lowing which Eq.~26! derives from the Lagrange equation
dL/dua* 5dL/dua50, whereL is the Lagrangian integral

L5
i

2 (
a

E ~ua* ] tua2ua] tua* !dxW2H, ~49!

FIG. 1. ~a! 2D plot of dc @Eq. ~44!# versusN52Na and~b! 3D
plot of tc

max @Eq. ~48!# versusN andd~0! for two equal waves sym-
metrically located from the origin. The power is expressed in un
of p and the nonlinearity coefficients satisfyL12/L1152. Two dis-
tinct ranges of power allowing for the existence ofdc delimit the
interaction regimes~ii ! and ~iii !, namely, 2N0

c564p/3,N,2N0
f

564p andN.2N0
f 564p. From ~b!, tc

max can be seen to decreas
with the wave power and to increase with the initial separat
distance between wave centroids.
r

lf

e

l-

in which the HamiltonianH has already been defined in E
~27! for symmetric nonlinearity coefficientsLab5Lba . The
variational approach, constructed from a Rayleigh-Ritz pr
ciple, assuresa priori that the wave dynamics may be d
scribed in terms of a finite number of time-dependent para
eters entering a trial function appropriately chosen to fit
true solutions of the coupled NLS equations~26!, obtained,
for instance, from their numerical integration. This trial fun
tion is elaborated from a test function, standardly chos
among Gaussians or sech functions, which ensures a w
localized shape for the wave forms. It is now well know
that for a single wave governed by the cubic NLS equati
sech test functions are more suitable than Gaussians in
sense that, e.g., with a nonlinearity coefficient equal to un
the critical threshold power for self-focusing computed fro
sech functions (Nc

sech511.72) is closer to the minimum valu
Nc511.68 than when it is computed from Gaussia
(Nc

Gauss5Ncrit54p) @19,31#. This discrepancy, however
consists of a narrow margin of error that we can further o
because the dynamical aspects such as self-focusing or w
spreading sorted out from Gaussian functions are qua
tively the same as for sech functions. Also, by starting i
tially with Gaussian optical wave packets as they are of
introduced in experimental setups, it seems more natura
select a Gaussian test function fitting the optical pulse
least att50. Nevertheless, sech functions will be discuss
at the end of this section for modeling 2D collapsing wa
packets. In the 1D case where no collapse occurs, applica
of the variational approach with sech test functions has b
performed by Anderson and Lisak@21# and then by Ueda
and Kath@22# to describe an incoherent two-soliton intera
tion and the nonlinear coupling of two NLS waves in optic
fibers, respectively.

A. General derivation of the variational equations
for coupled waves

We first consider a test function with a general formfa

depending on the rescaled spatial variablesjWa[@xW

2^xWa(t)&#/aa(t), where^xWa(t)& denotes the centroid of th
ath wave andaa(t) its typical time-varying radius. From Eq
~26! it is easy to derive the continuity equation for the pow
conservation of this wave:

] tuuau2522¹W •@ uuau2¹W arg~ua!#. ~50!

This relation, assumed to keep a covariant form after sub

tuting a trial function with a self-similar~jWa-dependent!
shape@28#, suggests the choice ofua with a real test function
fa in the form

ua~xW ,t !5
1

@aa~ t !#D/2 faS xW2^xWa~ t !&
aa~ t !

D
3expF i

ȧa~ t !

4aa~ t !
@xW2^xWa~ t !&#2

1
i

2
^xẆa~ t !&•@xW2^xWa~ t !&#1 i za~ t !G , ~51!
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whereza(t) denotes an arbitrary time-dependent phase
tor. In the substitution~51!, the space-dependent phase
then necessary to balance self-consistently the additi
contributions coming from the time derivatives ofaa(t) in
the self-similarly transformed version of Eq.~50!. General-
izing expression~51!, we now perform the standard avera
Lagrangian procedure by employing the more general s
tion

ua~xW ,t !5
1

AJa~ t !
faS xW2^xWa~ t !&

aa~ t !
D expH iua~ t !@xW

2^xWa~ t !&#21
i

2
cW a~ t !•@xW2^xWa~ t !&#1 i za~ t !J ,

~52!

whereua(t) accounts for the quadratic chirp parameter a

the vectorcW a(t) is related to the velocity of the centroi

displacement̂ xWa(t)& for the ath wave.Ja(t) is a real am-
plitude factor such thatJa(t)→0 when wave collapse deve
ops in finite time. Plugging Eq.~52! into the Lagrangian
~49!, we find that this integral explicitly reads

L5 (
a51

n H aa
D

Ja
FVa~2 u̇aaa

224ua
2aa

2 !

1CW a•~2^xẆa&aaua2 1
2 aacẆ a22uaaacW a!

1MaS ^xẆa&
2

•cW a2 ża2
cW a

2

4
D 2

D̄a

aa
2 G J

1 (
a,b51

n
Lab

2JaJb
aa

DWab~dW ab ,aa ,ab!, ~53!

with dW ab(t)[^xWa(t)&2^xWb(t)&. This formulation of the La-
grangian involves the coefficients

Va[E ja
2 ufau2djWa , CW a[E jWaufau2djWa ,

Ma[E ufau2djWa ,

~54!

D̄a[E u¹W ja
fau2djWa , Wab~dW ab ,aa ,ab!

[E ufa~jWa!u2UfbS aajWa1dW ab

ab
D U2

djWa ,

with fa5fa* . Here the integrals are taken in the who

space range (2`,jWa,1`) and ¹W ja
means ¹W ja

5¹W (xW

→jWa). For the sake of simplicity, we assume an even t

function fa such that the vectorCW a reduces to zero. The
variational equations obtained by performing the functio
derivatives of L with respect to the entire set of time

dependent parameters (Ja ,ua ,^xẆa&,aa ,za ,cW a) constitute a
dynamical system describing the global tendencies of
c-

al

u-

d

t

l

e

temporal evolution of the coupled waves. The simplest re
tion is derived fromdL/dza50: It restores the conservatio
of power withaa

D(t)/Ja(t)5aa
D(0)/Ja(0), for which, with-

out loss of generality, we can chooseaa
D(0)5Ja(0), imply-

ing therebyaa
D(t)5Ja(t). Keeping in mind that each wav

conserves its individual power, we then getNa5Maaa
D/Ja

5Ma . The remaining relations are derived fromL with re-

spect to (ua ,^xẆa&,cW a ,aa) and expand after straightforwar
calculations as

dL

dua

50⇒ua5
ȧa

4aa

,

dL

dcW a

50⇒cW a5^xẆa&, ~55!

dL

d^xWa&
50

W

⇒^xẄa&52 (
bÞa,b51

n
Lab

Maab
D ]^xWa&Wab~dW ab ,aa ,ab!,

(56)

dL

daa
50⇒ Va

2
äa5

2D̄a

aa
3 2

DLaa

2aa
D11 Wab~0W ,aa5ab!

1 (
bÞa,b51

n
Lab

2
]aa

@ab
2DWab~dW ab ,aa ,ab!#,

~57!

where ]aa
[]/]aa . Although improper, the notation]^xWa&

means a derivative with respect to the central position of

ath pulse, affected by its unitary orientation vectoreWa
~strictly speaking, one should introduce an auxiliary angu

variable va entering the definition ^xWa&
[u^xWa&u(cosva ,sinva) and derive the Euler-Lagrange equ
tions with respect to this cyclic variable too. However, f

technical convenience, we omit it and treat the vector^xWa& as
a canonical collective coordinate in our Lagrangian a
proach!. Taking into account the inversion symmetry b

tween theath andbth waves,dW ab52dW ba , it is then easy to
find again the conservation law for the total wave moment

linked to the total wave centroid by the relation] t
2^xW &

5] t
2(a51

n Na^xWa&/N5] tPW /N50 since

(
a51

n

Ma^xẄa&5 (
aÞb,a,b51

n
Lab

ab
D @]^xWa&Wab1]^xWb&Wab#50W .

~58!

In addition, the variational equations restore the conserva
of the Hamiltonian, which now is expressed asH[H free

1Hext with
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H free[ (
a51

n F D̄a

aa
2 1

ȧa
2Va

4
2

Laa

2aa
D Waa~0W ,aa5ab!G ,

~59!

Hext[ (
a51

n
Ma

4
^xẆa&22 (

aÞb,a,b51

n
Lab

2ab
D Wab~dW ab ,aa ,ab!.

~60!

Hext contains the kinetics of the pulses whose centroids m

with the velocity^xẆa& and the potential energy due to the
mutual coupling, denoted byH int[2(aÞbLabWab/2ab

D .
From the above expression, we can distinguish different
namics of the pulses following the sign ofH. Starting with
initially unchirped @ ȧa(0)50# pulses and considering th
caseD52, waves with a zero initial velocity in their cen
troids may collapse individually ifH free,0 and with a neg-
ligible interaction term measured throughWab . Alterna-
tively, even if H free is positive, but wheneverH int still
guaranteesH,0, pulses can attract each other and form
central lobe that will collapse in finite time. On the contra
waves withH.0 will ultimately disperse, after fusing o
not. Between both of these behaviors, we have the boun
caseH50, from which we can define an ‘‘escape’’ velocit
of collapsing wave forms. This escape velocity correspo
to the minimum speed of centroids that initially superim
posed waves must possess to become detrapped and
come the collapse. Following this definition, the escape
locity is given for theath wave by

ve,a
2 5

4

Maaa
2~0! F(

b

Lab

2

aa
2~0!

ab
2~0!

Wab~0W ,aa ,ab!2D̄aG .

~61!

For two identical Gaussian pulses (Na5Nb), its expression
simplifies into ve

254@(Na /Nc
0)21# and it makes sens

when pulses form a collapsing bound state with sufficien
high powersNa.Nc

054p/(Laa1Lab).

B. Interaction of Gaussian pulses

From now on, we investigate the dimensional caseD
52 suitable for describing a paraxial self-focusing. W
make use of the Gaussian test function

fa~jWa!5AKae2ja
2 /2. ~62!

This leads in particular to the interaction term for the no
linear potential ofL:

Wab~dW ab ,aa,ab!5pKaKb

ab
2

aa
21ab

2 e2dab
2 /~aa

2
1ab

2
!,

~63!

where the separation distancedab is now a time-varying
function, and the remaining coefficients~54! appearing in the
average formulation ofL simply read

Va5D̄a5Ma5pKa , ~64!

such thatNa5pKa . The wave centroids and widths are th
found to be governed by the dynamical relations
e

y-

a
,

ry

s

ver-
-

y

-

^xẄa&52 (
bÞa

2LabNb

p~aa
21ab

2 !2 dW abe2dab
2 /~aa

2
1ab

2
!, ~65!

äa

4
5S 12

LaaNa

4p D 1

aa
32 (

bÞa

LabNb

2p~aa
21ab

2 !2

3aaH 12
dab

2

~aa
21ab

2 !J e2dab
2 /~aa

2
1ab

2
!. ~66!

Applying Eq. ~65! to two neighboring waves, we constru

an equation fordW ab(t) (a,b51,2):

dẄ ab52
2

p (
aÞb

~LabNb1LbaNa!

~aa
21ab

2 !2 dW abe2dab
2 /~aa

2
1ab

2
!.

~67!

Let us now investigate the case of two identical copro
gating waves with equal powersN15N2 and undergoing a
mutual coupling with symmetric nonlinearity coefficien
such as those employed in Ref.@24#, i.e., L115L225

1
8 and

L125L215
1
4 . In this case, the separation vector evolves

dẄ 52
8N1

p~a1
21a2

2!2 L12dW expF2
d2

a1
21a2

2G ,
dW ~ t ![^xW1~ t !&2^xW2~ t !&, ~68!

while the wave radiia1(t) anda2(t) are governed by analo
gous dynamical equations: The equation fora1(t) reads

ä1

4
5S 12

L11N1

4p D 1

a1
32

L12N1

p~a1
21a2

2!2

3a1H 12
d2

~a1
21a2

2!J expF2
d2

a1
21a2

2G ~69!

and the second equation fora2(t) proceeds from the sam
equation~69! in which the indices 1 and 2 have to be r
versed. So, starting with identical symmetric waves hav
equal initial conditions with a1(0)5a2(0) and ȧ1(0)
5ȧ2(0), oneobviously hasa1(t)5a2(t). When such waves

are initially superimposed withdW (0)50W anddẆ (0)50W , they
stay mutually overlapped at every later time and their ra
are governed by the relation

ä1

4
5S 12

L111L12

4p
N1D 1

a1
3 , a15a2 . ~70!

Thus initially superimposed waves collapse in finite tim
providedN15N2.Nc

05Ncrit /(L111L12)5834p/3, in ac-

cordance with Eq.~41!. In the opposite limitudW (0)u→1`

with u] tdW (0)u50, Eq. ~68! still yields udW (t)u5udW (0)u51`
at every time anda1(t) is governed by

ä1

4
5S 12

L11N1

4p D 1

a1
3 , a15a2 , ~71!

which restores the usual self-focusing threshold for o
Gaussian wave: N25N1.Nc

f [Ncrit /L115834p. For



b

nd

th
a

ni
ol
ab

ve
ve
s
re
a

i

-

r
al
e

nd

er

r
-

s

si

ri-

re
s a
on-

rac-

ns

ach
n of

ve
vel-

cov-

her
s in
t

ain

PRE 58 6617COALESCENCE AND INSTABILITY OF . . .
equal waves such asN5N11N252N1 , we recall that the
critical distance beyond which well-separated waves can
have independently of each other is given by Eq.~44! with
L1252L11:

dc5rF2 lnU 2N

2Nc
f 2NUG1/2

, r5a1~0!5a2~0!. ~72!

With d(0)<dc , waves are expected to mutually attract a
merge into one central lobe ifN15N2 satisfies

Nc
05

32p

3
,N15N2,Nc

f 532p. ~73!

More precisely, ford(0),dc , the Hamiltonian is close to
that for superimposed waves, which is negative. So, in
range of power values, Gaussian waves should merge
fuse into a central lobe that is condemned to collapse in fi
time with a resultant power exceeding the critical thresh
for self-focusing. In addition, due to the presence of the
solute value in the estimate~72!, the existence of a finite
separation distance, below which two equal waves withN1

5N2.Nc
f must fuse and self-focus, makes sense, e

though those regimes favor individual collapses for wa
containing separately a power larger than the critical thre
old Nc

f . From these possibilities, we emphasize the th
typical interaction regimes between both waves, as they h
been introduced in Sec. II, namely,~i! whateverd~0! may be,
the two waves spread out when their individual power
below Nc

0; ~ii ! for Nc
0532p/3,N15N2,Nc

f 532p, the
waves merge whend~0! is relatively close todc and form a
dispersing structure if initiallyd(0).dc or, conversely, they
fuse into a central lobe that collapses in finite time ifd(0)
<dc ; and ~iii ! for N15N2.Nc

f 532p, the two waves gen-
erally collapse in finite time individually, except if their ini
tial separation distance is smaller thandc , in which case they
may amalgamate until forming a collapsing structure.

In this last situation, coalescence of waves can clea
develop if they are separable initially, i.e., if their mutu
separation distance is initially at least larger than two tim
their radii with d(0)>2r52a1(0)52a2(0). The two
maxima of the waves are then well separable@10#. Note that
the double conditiondc>d(0).dN[Cr with C52 implies
a bound from above forN15N2 when assuminga priori

Na.Nc
f , that is, Nc

f ,Na,Nsup5Nc
f /(122e2C2/2)

51.371Nc
f . Conversely, this constraint introduces a bou

from below in the opposite situationNa,Nc
f , that is, Nc

f

.Na.Ninf50.787Nc
f . These intervals become narrow

when increasing the value ofC: ChoosingC52.2 as in@24#
yields Nsup51.216Nc

f and Ninf50.85Nc
f . To illustrate the

different interaction regimes for two waves, we have nume
cally integrated Eqs.~68! and ~69! and plotted the corre

sponding curves for the vectordW (t) and the radiusa1(t)
5a2(t) in Fig. 2, starting withr5a1(0)5a2(0)51, ȧ1(0)

5ȧ2(0)50, and ] tdW (0)50W . ~i! For N15N2510p, both
waves spread out monotonically@Fig. 2~a!#. ~ii ! For Nc

0

,N15N2530p,Nc
f , the waves merge and form a disper

ing wave form providedd(0).dc.2.61r @Fig. 2~b!#,
whereas they self-focus into one central lobe in the oppo
e-

is
nd
te
d
-

n
s
h-
e
ve

s

ly

s

i-

-

te

limit d(0)<dc.2.61r @Fig. 2~c!#. This value ofdc , exactly
reading dc52.608 14 and computed with Eq.~72! for r
51, is in excellent agreement with the one identified nume
cally from the variational equations:dc

var52.6083. Finally,
the waves self-focus separately forN15N2535p.Nc

f pro-
videdd~0! is at least abovedc52.51, as expected@Fig. 2~d!#.
At very high powersN15N2@Nc

f , the critical distancedc

becomes formally independent ofN5N11N2 , with dc
→(2 ln 2)1/2r as N→1` and dc thus diminishes asN in-
creases from 2Nc

f in this power regime. Thus the waves a
more difficult to amalgamate when they both posses
power strong enough to promote individual collapses. C
versely, whenN15N2,Nc

f , dc increases withN until infin-
ity as N→2Nc

f .
We can remark that in the amalgamation regimes cha

terized by the fusion@d(t)→0# and collapse@a1(t)→0# of

coupled waves, the quantitiesdW (t) and a1(t) may have an
oscillatory behavior during transient evolutions. Oscillatio

in dW (t) characterize wave components passing through e
other and they have also been detected in the interactio
two incoherent@21# and coherent@32# NLS solitons treated
by a similar Rayleigh-Ritz principle. Pulsations in the wa
widths can be compared with the steady oscillations de
oped by soliton solutions to the 1D version of Eq.~26! when,
e.g., they are close to become mutually trapped, as dis
ered in Ref.@22#. Because the widthsaa(t) are driven by the

motions of the central positionŝxWa(t)&, both these quanti-
ties oscillate with analogous periods that are here eit
modulated or damped when collapse occurs. Oscillation
the separation distanced(t) can be understood from the firs
integral of motion computed with Eq.~68! for two waves
with equal amplitude and width@a1(t)5a2(t)#.

In this configuration let us indeed multiply Eq.~68! by dẆ

and combine it with Eq.~69! multiplied by ȧ1 . By doing so
and integrating the resulting equation once in time, we obt
the potential function formulation

1
2 ~dẆ !212~ ȧ1!21P~d,a1!50, ~74!

P~d,a1![S 42
L11N1

p D S 2

a1
22

2

a01
2 D

2
2N1

p
L12S e2d2/2a1

2

a1
2 2

e2d0
2/2a01

2

a01
2 D

2
1

2
~dẆ 0!222~ ȧ01!

2, ~75!

with dW 0[dW (0), dẆ 0[dẆ (0), a01[a1(0)5r, and ȧ01
[ȧ1(0). From Eq. ~74! it is clear that solutionsd(t)

[udW (t)u and a1(t) may exist only if the potential function
P(d,a1) is negative. For subcritical powersN1,Ncrit /(L11
1L12) leading to an increasinga1(t), this condition
P(d,a1),0 is systematically satisfied when

1

2
~dẆ 0!212~ ȧ01!

2>
2N1

p
L12

e2d0
2/2a01

2

a01
2 . ~76!
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FIG. 2. Wave radiusa1(t)5a2(t) starting from unity without initial divergence@only a1(t) is shown as a solid line# and separation

vectordW (t) ~dashed line! versus time, numerically integrated from the variational equations~68! and ~69!. By abuse of notation,dW (t) has
been kept as a vector, instead of modulus, in order to permit it to become negative. The value of the initial separation distance
centroids, which determines the evolution of the wave radius withḋ(0)50, has been indicated around the solid curves.~a! Interaction regime
~i! for which the two waves with a weak power (Na510p) monotonically disperse. Ford~0! far above 5, wave radii were observed
disperse identically.~b! Interaction regime~ii ! for which waves with partial powerNa530p merge and spread out asymptotically when th
mutual separation distance initially satisfiesd(0).dc.2.608.~c! Interaction regime~ii ! for which the same waves as in~b! amalgamate into
one central self-focusing lobe whend(0)<dc . Note the oscillations in the separation vector that are damped to zero.~d! Interaction regime
~iii ! for which waves withNa535p collapse individually before their separation distance reaches zero, except whend~0! is initially less than
a critical value. Numerically, it was observed that this critical distance of separation wasdc.3.14, i.e., slightly above the estimate~44!
yielding dc52.51 forNa535p.
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For the initial data such asdẆ 050W and ȧ0150, however,
P(d,a1) is negative provided thatd(t) belongs to the
bounded ranged(t)<d* , with d* defined by

d* 5&a1~ t !H lnS 4p

N1L12
2

L11

L12
D 21

2 lnF 11
a1

2

a01
2 S e2d0

2/2a01
2

S 4p

N1L12
2

L11

L12
D21D G J 1/2

, ~77!

which consists of a turning point beyond which the intera
tion between waves is attractive and conservative. The r
tive centroid velocity changes its sign together withȧ1 at the

coordinatesdW (t)56dW * , so that the beams move toward

the point of coalescence (dW 50W ) where they pass throug
each other. The beams can then periodically change p
before, e.g., collapse occurs. For comparison, ifa1(t)
5a1(0) was fixed,d(t) would evolve in the ranged(t)
-
a-

ce

<d*[d0 and the wave controids would oscillate periodica
with a fixed periodTp5&*0

d
* dd/A2P(d,a0) @21#. In the

present context wherea1(t) varies, dW (t) oscillates either
while its amplitude andd* increase witha1(t) when d*
>d0.dc @see Fig. 2~b!# or until vanishing when collapse
occurs, as both beams merge symmetrically whend* >dc
>d0 @see Fig. 2~c!#. In this situation, asa1(t)→0, the modu-

lus of dW * simplifies into the limit

d* ~ t ! ——→
a1~ t !→0

&a1~ t !ln1/2
1

S 4p

N1L12
2

L11

L12
D , ~78!

which makes sense in the regime of intermediate powers
coalescence: 4p/(L111L12),N1,4p/L11 (0,4p/N1L12
2L11/L12,1). In this range the oscillation amplitudes a
forced to decrease withd(t)<d* (t).O„a1(t)… and to attain
ultimately zero, as observed in Fig. 2~c!. Before this, both
d(t) and a1(t) reach extremal values at some pointsd
5d* . The number of oscillations increases with the collap
time, as the value ofd~0! is augmented todc.2.61r. Con-
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versely, we could reason in terms ofa<a* above which no
solution exists and below whicha(t) oscillates until reaching
zero. From a mechanical analogy, the potential functionP
here plays the role of a potential well with a typical wid
decreasing to zero in case of collapse, in which a part
periodically moves down the potential slope towards
point of coalescenced50. Such oscillations might, howeve
be subdued in the true coalescence process because the
tional method captures the total power engaged in b
waves without permitting them to evacuate a power exces
the boundaries, as any NLS solution usually does wit
power above the collapse threshold@28#. Note finally that the
existence of the turning pointd* at high power levelsN1
.4p/L11 does not make sense, which justifies why no
cillation develops in Fig. 2~d!.

Let us now discuss some estimates of the finite colla
moment at which two coupled waves may blow up in the
case. When the virial integral~32! tends to vanish in finite
time, both of the positive virial contributionsI a(t)

[N21*(xW2^xW &)2uuau2dxW tend to zero in the same limit. Al
the waves should thus blow up at the same instanttc , which
appears logical by virtue of their mutual nonlinear coupli
in Eq. ~26!. Claiming this just consists of a conjecture sin
we know that for the cubic NLS equation a wave blow-
generally arises earlier than a total collapse for which
moment of the singularity is given by the first zero ofI (t).
This momenttc

max is the maximum time for blow-up~48!,
established from the virial relation] t

2I (t)58H/N with N
5(aNa and H given by Eq.~39!. Considering two waves
without any initial divergence@ İ (0)50# and all centered on
the origin, one hasI (0)5r2 and the maximum collapse tim
reads

tc
max5r2F N

4(
a

NaH(
b

LabNb

4p
21J G

1/2

. ~79!

For L115L225
1
8 andL125L215

1
4 , this expression simpli-

fies into tc
max5(r2/2)@32p/(N232p)#1/2 in the one-wave

case with N5N1.Nc
f 532p (N250) and into tc

max

5(r2/2)@32p/(3Na232p)#1/2 for two superimposed wave
with Na5N15N2.Nc

0532p/3. These values oftc
max are in

perfect agreement with those given by numerical integrati
of the variational equations~71! and~70!, respectively. This
excellent agreement follows from the fact that for NLS sy
tems, the behavior of the radiusaa(t);AI a(t) is self-
consistent with the one obtained from the virial integral@28#.
For two identical but initially separated waves withN1
5N2 (N52N1), r5a1(0)5a2(0)51, andd(0)5dab(0),
the estimate~48! reads

tc
max5

AI ~0!

2 F N1

32p
~112e2d2~0!/2!21G21/2

, ~80!

where I (0)[r21(aNa^xWa(0)&2/N reduces to I (0)5r2

1d2(0)/4 for wave forms symmetrically located from th
origin. Comparing this estimate with the results obtain
from the variational approach, we findtc

max53.2105 for high-
power waves collapsing individually withN15N2535p and
le
e

ria-
th
to
a

-

e

e

s

-

d

d(0)53.5, while numerically the variational model yield
the collapse timetc

var51.7644. For the same power value
but choosing nowd(0)53, one hastc

max52.62355tc
var. In

the amalgamation regimes starting from powersN1,Nc
f

532p, one can point out the characteristic valuesN1

530p and d(0)52.5 leading to tc
max55.6764.tc

var

55.6756 and N1530p and d(0)52.2 yielding tc
max

52.30235tc
var. In these configurations, the collapse mome

tc
var is generally equal to its virial counterparttc

max. This com-
parison holds except in the first configuration, for which t
total mean square radius~from which the definition oftc

max

follows! and the separation distanced(t) do not vanish si-
multaneously when both wave packets separately colla
The instanttc

max must here be regarded as a maximum ex
tence time for solutions that blow up on their respective c
troids beforeI (t) has time to vanish att5tc

max. So, in this
situation, the results given by the variational approach h
to be considered with caution.

In summary, the variational method provides reliable
sults fitting the virial estimates in most of configurations, t
simplest of which are the one-wave case and the case of
superimposed waves with a wave radiusAI (t);a1(t)
5a1(0)@114Vt2/a1

4(0)#1/2, where V[12N1/32p in the
former situation andV[123N1/32p in the latter one. In
more complicated configurations involving some dynam
in the separation distancedab(t), the results obtained from
the variational model may supply less precise informat
about the coalescence mechanism. In particular, the deve
ment of oscillations indab(t), which means that before
reaching a single-wave-form state waves pass through e
other periodically, should be confirmed by direct numeric
integrations of Eq.~26!. In spite of this reserve, we can nev
ertheless emphasize that the variational approach restore
principal tendencies that two coupled NLS waves can
velop: their simple spreading, their mutual coalescence u
collapse, or their individual self-focusing according to the
individual powers, as illustrated by Fig. 2.

C. Interaction potential for the self-attraction
of sech-shaped waves

The previous analysis can be repeated with test functi
different from Gaussians, as, e.g., sech functions. Expre
in radially symmetric geometry, sech functions yield a cri
cal power for collapse closer to the minimal boundNc
511.68, which theL2 norm of solutions to the cubic NLS
equation withLaa51 must exceed to promote the collaps
However, when making use of sech functions expressed
sech@A(x2^xa&)21(y2^ya&)2# in the present scope, w
cannot conveniently determine the integral coefficients
curring in the average Lagrangian~53!. Instead, we propose
a test function based on a sech shape with separable vari
and defined for theath wave as

fa~jWa!5AKa sechS x2^xa~ t !&
aa~ t ! D sechS y2^ya~ t !&

aa~ t ! D ,

~81!

where the wave radius is assumed to be the same alongx
and y directions. Also, for the sake of simplicity, we wil
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restrict the following analysis to the coupling of two wav
having identical radiia1(t)5a2(t) and symmetrically lo-
cated from the origin on thex axis with ^x1(t)&
52^x2(t)&, while ^y1(t)&5^y2(t)&50. The integrals enter
ing L then readVa52Kap2/3, Ma54Ka5Na , and D̄a
58Ka/3, and the self-interaction potential between wave

determined by the integralWab(dW ab ,aa ,ab), computed as

Wab~dab52^xa&,aa5ab!5
32

6
KaKbFS 2^xa~ t !&

aa~ t ! D
~82!

for two symmetric waves with equal radii identified by th
indicesa51 andb52. Here the function

F~X!5
X cosh~X!2sinh~X!

sinh3~X!
~83!

satisfies limX→6` F(X)50 and limX→0 F(X)5 1
3 . From the

expression of the free part of the Hamiltonian~59!, we de-
duce that 2D identical sech-shaped pulses have the cri
power threshold for collapse:Nc,sech

f 512/Laa . This value is
thus closer to the minimumL2 norm Nc/Laa511.68/Laa
for collapse than its Gaussian counterpart 4p/Laa . More-
over, when two sech-shaped pulses initially overlap with
chirp and a zero velocity in their centroid, we observe fro
the total Hamiltonian that each of both superimposed wa
must possess a power exceedingNc,sech

0 512/(Laa1Lab) for
the two pulses to undergo a collapse. From these proper
we can guess that the regimes of interaction between s
rate sech pulses withNa5Nb will be the same as those fo
Gaussian pulses, namely,~i! wave spreading whenNa

,Nc,sech
0 , ~ii ! dispersion or amalgamation of two mergin

pulses with medium powerNc,sech
0 ,Na,Nc,sech

f , whenever
their initial separation distance is above or below a criti
value, respectively, and~iii ! individual collapses when both
pulses are well separated withNa.Nc,sech

f . These typical
behaviors can be checked from a direct numerical integra
of the variational equations for the separation distance
tween waves and the pulse widths, which read in this con
(Na5Nb) as

d̈5
4NaLab

3aa
4

d

dX
F~X!uX5d/aa

, d~ t ![2^xa~ t !&,

~84!

p2

16
äa5H 12

LaaNa

12 J 1

aa
32

LabNa

4aa
3

d

dX
@XF~X!#uX5d/aa

.

~85!

In particular, periodic motions of the wave central positio
and widths can be detected in the amalgamation regimes
which bothd(t) andaa(t) tend to zero in finite time. Only
the shape of the pulses and their related critical power thr
old for collapse slightly change, compared to Gaussian
functions. The evolution regimes of coupled waves rem
comparable for Gaussians and sech pulses. For further c
parison, we have plotted in Fig. 3 the integralWab(X) char-
acterizing the self-attraction potential between two wa
with equal radiusaa5ab , when they are either Gaussia
~solid line! or sech shaped~dashed line!, as functions of the
is
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ratio X5d(t)/aa(t). This integral provides a measure of th
attractor of mutually coupled waves. It is given b
Wab

Gauss(X)5(NaNb/2p)exp(2X2/2) for Gaussian pulses an
by Wab

sech(X)5(NaNb/3)F(X) with F(X) defined by Eq.~83!
for sech-shaped pulses. As can be seen from Fig. 3, b
attractor potentials present similar behaviors along the r
d(t)/aa(t): Wab(X) vanishes asX→1`, that is, when
d(t)→1` or aa(t)→0 if both waves remain well separate
andWab(X) reaches its maximum value asX→0, i.e., when
waves mutually overlap. In this situation, the interacti
term of the HamiltonianH int, which involves this integral
contributionWab , diverges to2` when collapse develop
with aa(t)5ab(t)→0. Finally, we can note that self
attraction of waves is efficient within a broader, althou
less deep, basin of attraction for sech pulses than for Ga
ian pulses.

IV. AN INSTABILITY CRITERION
FOR COUPLED SOLITONS

In Ref. @23# the modulational instability of two or more
coupled plane waves was investigated by means of a pe
bation analysis applied to Eq.~3!. This analysis consisted in
determining the growth rate of perturbations acting on
ementary solutions to Eq.~3! that are assumed to be uniform
in space and oscillatory in time as

Aa~xW ,t !5Aa
0 expF i (

b51

n

LabuAbu2tG , a51,...,n, ~86!

with real background componentsAa
0. Instead of plane

waves with uniform amplitudes, we can attempt to determ
the conditions for instability of stationary solutions to E

~26!, being bounded in space and localized withuua(xW ,t)u
→0 as uxW u→1`. Such solutions usually refer to solitar
waves or ‘‘solitons’’ and they are expressed as

ua~xW ,t !5Ra~xW !exp~ ilat !. ~87!

Here Ra is supposed to be a real, positive, and even~bell-
shaped! function obeying the differential equation

FIG. 3. IntegralWab(X) versus the ratioX5d(t)/aa(t) enter-
ing the interaction potential of two waves with equal radiusaa(t)
5ab(t), when modeling them with Gaussians~solid line! and sech
functions~dashed line!.
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2laRa1¹W 2Ra1 (
b51

n

LabRb
2Ra50 ~88!

providedla.0 whenever the functionsRb (b51,...,n) de-
cay to zero at infinity. For the sake of simplicity, we suppo
that for each wave there exists such a stationary state, w
is unique, radially symmetric, and positive at a given f
quencyla . So we now turn to the problem of the stability o
spherically symmetric solutions of Eq.~26! in the form~87!.
This stability problem is investigated from the perturbed
lutions

ua5@Ra1~va1 iwa!#eilat, Ra[Ra~ uxW u! ~89!

whereva and wa are real-valued functions localized at in
finity. Linearizing Eq.~26! with respect to these function
then yields the eigenvalue problem forva andwa ,

] tva5L0awa , ~90!

2] twa5L1ava22 (
bÞa

LabRaRbvb , ~91!
ar

tio

a
e

or
e
ch
-

-

where the self-adjoint operatorsL0a andL1a are defined by

L0a[la2¹W 22 (
b51

n

LabRb
2, ~92!

L1a[L0a22LaaRa
2. ~93!

To describe the instability ofn solitons mutually coupled
with symmetric nonlinearity coefficientsLab5Lba , we de-

fine the perturbation vectorsvW 5(v1 ,v2 ,...,vn)T and wW

5(w1 ,w2 ,...,wn)T embedding then components of the per
turbative eigenmodes~the superscriptT means ‘‘transpose’’!
and reformulate the above spectral problem as

] tvW 5L0wW , 2] twW 5L1vW . ~94!

Equations~94! involve then3n symmetric matrices, which
still consist of self-adjoint operators:
L0[S L01

0
¯

0

0
L02

¯

0

¯

¯

¯

¯

0
0
¯

L0n

D , L1[S L11

22L21R2R1

¯

22Ln1RnR1

22L12R1R2

L12

¯

22Ln2RnR2

¯

¯

¯

¯

22L1nR1Rn

22L2nR2Rn

¯

L1n

D , ~95!
e

of

e

whosen-dimensional eigenvectors with eigenvalue zero

RW 5(R1 ,R2 ,...,Rn)T and ¹RW [(¹R1 ,¹R2 ,...,¹Rn)T since

L0RW 50W and L1¹RW 50W . The latter relation simply follows
from deriving the ground-state equationL0aRa50 for each

Ra(uxW u) with respect to space variables@by convention we

note ¹[(xW /uxW u)•¹W ]. Combining Eqs.~94!, we obtain] t
2vW

52L0L1vW , so that when one assumes that the perturba
grows exponentially with a growth rateg, we find thatg
obeys the relation

g252
^vW uL1vW &

^vW uL0
21vW &

. ~96!

Equation ~96! makes sense provided the vectorsvW are or-

thogonal to the ground-state vectorRW , i.e., ^vW uRW &50. Here
the angular bracketŝu & correspond to theL2 inner ~scalar!

product between two real vectors:^aW ubW &5*aW T
•bW dxW . Choos-

ing vW'RW , we first recall that̂ vW uL0
21vW & is positive definite.

Indeed, each componentRa is the unique eigenstate ofL0a
with eigenvalue zero, which is the lowest eigenvalue as e
Ra is positive and nodeless. Consequently, for all eigenv

tors vW'RW , L0 is positive definite and so iŝvW uL0
21vW &. This

property can easily be found again by using the explicit f
mulation ofL0a[2(1/Ra)¹•@Ra

2¹(1/Ra)#.
e

n

ch
c-

-

Next we determine the sign of^vW uL1vW & by maximizingg2

on the class of vectors orthogonal toRW . This amounts to
solving the spectral problem fromL1 , rewritten in the con-
venient form

L1vW 5l* vW 1mRW , ~97!

where the sign ofl* will indicate stability (l* .0) or in-
stability (l* ,0) and mÞ0 is an undetermined Lagrang

multiplier related to the orthogonality constraint^vW uRW &50.
Following the procedure expounded in@4,33,34#, we expand

vW and RW in terms of a complete orthonormalized system
eigenvectors for the operatorL1 ~which is allowed sinceL1
is self-adjoint!

L1ucW k&5l̄kucW k&, ~98!

such asuvW &5(kckucW k&. Elementary projections provide th

coefficientsck5m^cW kuRW &/(l̄k2l* ) and therefrom

uvW &5m(
k

ucW k&^cW kuRW &

l̄k2l*
. ~99!

Furthermore, the orthogonality condition̂vW uRW &50 gives
m f (l* )50 with
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f ~l* ![(
k

^RW ucW k&^cW kuRW &

l̄k2l*
. ~100!

In this sum, the eigenvectorcW 15¹RW with eigenvaluel̄1

50 does not contribute sincêcW 1uRW &50, which leads toc1

50. Noticing that the even components ofRW without node

imply that the components of¹RW each have one node, w
infer thatL1 hasat leastone eigenvalue that is strictly nega

tive l̄0,l̄150 and it satisfiesL1cW 05l̄0cW 0 , wherecW 0 hasn
components with no zeros. The existence of at least
negative eigenvalue forL1 can follow from, e.g., differenti-
ating the bound-state equationL0aRa50 with respect to the

space radiusr[uxW u, as the Laplacian operator¹W 2 in Eq. ~92!

reduces to¹W 25r 12D] r r
D21] r for radially symmetric bound

states. Doing this, one readily getsL1] rRW 5@(1

2D)/r 2#] rRW , with ] rRW [(] rR1 ,] rR2 ,...,] rRn)T, from
which we infer thatL1 has surely a negative eigenvalu
whenD.1 since

^] rRW uL1] rRW &5~12D !K 1

r
] rRW U 1

r
] rRW L . ~101!

An important remark is that, unlike the cubic NLS equati
for one wave, it is not proved actually that each perturbat
component in the matricial spectral problem~98! possesses a
negative eigenvalue. Indeed, unlike the one-wave case
which L1 is a scalar operator with a single negative eige
value, each of then spectral equations here contains coupli
terms involving the neighboringRi ’s, which seems not trac
table analytically. In addition, the set of all eigenvalues m
not reduce to a unique value with multiplicity equal to
Therefore, knowing the existence of at least one nega
eigenvalue, we choosel̄0,0 as the largest one among all th
possible negative eigenvalues (l̄05sup$l̄k,0%). By choos-
ing l̄0 so, it can be seen thatf (l* ) decreases to2` asl*
→l̄0 and increases to1` in the limit l*→l̄2 , wherel̄2 is
the first positive eigenvalue ofL1 ~the latter surely exists an
can be selected as, e.g., the smallest positive value in
continuum spectrum ofL1!. As, moreover,f (l* ) is a mono-
tonically increasing function ofl* , it goes across thel*
axis only once within the interval ]l̄0 ,l̄2@ , so that we can
determine the sign ofl* Þ0 from that of f (0). For f (0)
.0, l* is negative and a sufficient condition for instabili
follows. For f (0),0, l* may be positive only if it can make
be sure thatl̄0,0 is unique. From Eq.~98! we remark that

f ~0!5(
k

^RW ucW k&^cW kuRW &

l̄k

5^RW uL1
21RW & ~102!

and we can derive the ground-state equationL0aRa50 with
respect to the frequencyla to get

L1a

]Ra

]la
22 (

bÞa
LabRbRa

]Rb

]la
52Ra . ~103!
e

e

or
-

y

e

he

As it can be justified for symmetric waves or by performin
a simple shift in the frequency range, we henceforth assu
that all solitary waves possess an identical frequencyl1
5l25¯5ln[l.0 for a51,...,n. Straightforward ex-
plicit calculations based on Pohoz’aev identities can ind
show that such localized solitary waves may exist provid
D,4. Under this requirement, Eq.~103! takes the matricial
form

L1

]RW

]l
52RW ~104!

and from Eqs.~104! and ~102! we finally obtain

f ~0!5^RW uL1
21RW &52K RW U]RW

]l
L 52

1

2 (
a51

n
]

]l
^Ra

2&,

leading to

f ~0!52
1

2

]

]l
N$RW %, N$RW %[ (

a51

n

iRai2
2. ~105!

Now we make use of the dilation invarianceRa(xW ,l)

→AlRa
0(AlxW ) to find N$Ra%5l12D/2N$Ra

0%, where Ra
0

5Ra(l51). From Eq.~105! it is clear that instability of
bound states arises in the dimensional casesD.2, for which

(]/]l)N$RW %,0 assuresf (0).0. Following this procedure
the dimensional caseD52 consists of a marginal configura
tion suggesting instability.

In the opposite casef (0),0 concerning low spatial di-
mension numbersD,2, we recall thatl* is positive when-
ever L1 has a unique negative eigenvalue solving Eq.~98!.
This property then supplies a necessary condition for
stability of ground states. It can also be viewed as a suffic
condition for soliton stability in the Lyapunov sense, follow
ing which l* .0 ensures the positiveness of the NL

Lyapunov functional @28# S[H2H$RW %1l(N2N$RW %)

5^vW uL1vW &1^wW uL0wW &, with H given by Eq.~27!. However,
as warned above, stability follows from uniqueness and s
plicity of the negative eigenvaluel̄0 , which we cannot prove
due to the vectorial nature of the spectral problem~94!. Let
us indeed imagine that a second discrete eigenvaluel̄08,l̄0

,0 exists; then, within the interval ]l̄08 ,l̄0@ , there should
exist another valuel* located before the root off (0), en-
suring the instability of solitary waves even in the 1D ca
Also, if L1 has a double eigenvalue, there exist two orthog

nal eigenstatesvW 1 and vW 2 that can be linearly combined t

construct a vectorvW perpendicular toRW , which surely leads
to instability. This ambiguity is nevertheless overcome wh
one investigates the stability of identical ground states in

form R1(uxW u)5R2(uxW u)5¯5Rn(uxW u)[f(uxW u), where f
obeys the cubic differential equation

2lf1¹W 2f1~L111L121¯1L1n!f350, ~106!

by applying the symmetry between the coupling coefficie
(a,bLab5(b,aLba.0 with a,b51,2,...,n. In that case,L1

is a scalar operator with only one negative eigenvaluel̄0
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,0, so that the constraintf (0),0 leading to]N/]l.0
guarantees the stability of the coupled ground states. T
property naturally applies to 1D NLS systems for whi
coupled solitons compose the set of minimizers of Eq.~26!.
This set decomposes over the elementary sech soliton s
tion

f~x!5A 2l

(
a51

n

L1a

sech~Alx!, ~107!

which is thus stable. This result agrees with the orbital s
bility of two coupled NLS ground states demonstrated
Ref. @35# for D51.

Finally, we can here emphasize that the growth rate~5!
for plane-wave instability can be refound in the case of, e
two coupled waves, when combining Eqs.~90! and ~91! for
uniform statesRa5Aa (¹2Ra50) with frequenciesla
5(b51,2LabuAbu2, which become unstable under oscillato

perturbations evolving asva ,wa;cos(kW•xW). In addition, the
preceding analysis could easily be repeated for a gen
nonlinearity functionF~•! entering (b51

n LabF(uubu2)ua

with F(s)→0 as s→0, instead of a cubic one
(b51

n Labuubu2ua , in Eq. ~26!. In that case, the basic oper
tor L0a originally given by Eq.~92! for cubic nonlinearities

has to be replaced byL0a
F 5la2¹W 22(b51

n LabF(Rb
2), so

that the functions (va ,wa) obey the eigenvalue problem

] tva5L0a
F wa ,

2] twa5L0a
F va22 (

b51

n

LabF8~Rb
2 !RaRbvb , ~108!

with F8(Rb
2)[]F/]Rb

2.

V. DISCUSSION

In the present analysis we have investigated the var
regimes of mutual interaction between nonlinear light wa
described by several coupled NLS equations. Three typ
regimes of interaction between two identical Gaussian wa
naturally arise from this analysis.~i! When both pulses hav
a power below the thresholdNc

0 for the self-focusing of su-
perimposed wave packets they spread out asymptoticall
time. ~ii ! When the optical pulses possess an individ
power betweenNc

0 and Nc
f , whereNc

f is the self-focusing
threshold power for an isolated Gaussian, the waves fuse
one entity that spreads out asymptotically or collapses
finite time whenever their initial separation distance is abo
or below a critical valuedc , respectively. This critical dis-
tance of separation depends on the power contained in
wave and the basin of attraction delimited bydc increases
with the wave power.~iii ! When the two waves have a pow
exceedingNc

f they individually collapse without mutual cor
relation, except when their separation distance is less
dc , in which case they can merge into one self-focus
structure. Heredc decreases with the wave power. All the
characteristic regimes have been described and confirme
Sec. III through a variational approach that restores the m
is
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dynamics inferred from the virial arguments expounded
Sec. II, up to oscillations in the separation distanced(t).
Criteria for coalescence have been elaborated on the van
ing in finite time of the virial integralI (t) for negative-
energy states, which includes the vanishing of the separa
distance between wave centroids and depends on the nu
and individual power of beams. Consequently, those theo
ical expectations may be altered to a certain extent
blow-up phenomena occurring before the total mean squ
radius of coupled waves, together with their mutual sepa
tion distance, has completely vanished. Further details
interaction dynamics require numerical integrations of E
~26! that will be presented elsewhere@36# and will clearly
display evidence of amalgamation mechanism and deve
ment of oscillations in the wave centroids. Eventually, a s
ficient condition for the instability of coupled NLS solitar
waves and a stability criterion for identical coupled NL
ground states have also been constructed, which can be
pressed in terms of the derivative of the soliton powers w
respect to their frequency. This instability criterion is com
patible with the condition for blow-up yielded by the viria
identity, following which a wave collapse can develop
cubic media forD>2 only.

Finally, it is worth investigating the competition betwee
modulational instability and coalescence of coupled wave
order to know whether a mutual amalgamation of waves
be realized before the full development of their modulatio
instability. This property might, for example, be used to pr
mote efficiently the formation of hot spots with a very hig
peak power in nonlinear, weakly dispersive media, start
with a set of incident beams with much weaker intensitie

For one wave~A1Þ0, A250! with L11 normalized to
unity, the typical time for forming filaments from a uniform
plane wave with constant amplitudeuA1u and initial length
L' is given by the inverse of the growth rate derived fro
Eqs. ~5!–~7! and reducing in that case togmax5uA1u2. The
number of filaments formed attfil5gmax

21 is equal toN
5(L' /lmod)

D, whereD is the space dimension number an
lmod52p/uA1u52p/kmax @kmax5uA1u maximizes the growth
rate g(k)#. In terms of power, we also haveN5P0 /Pfil ,
whereP05P(L'/2) andPfil5P(lmod/2) are computed from
the integral functionP(x)[2D21p*0

xuA1u2r D21dr. We can
notice that the initial beam powerP05(p/4)L'

2 uA1u25N1

recovers the same value when it is computed with a o
component 2D Gaussian profile selected in Eq.~37!, modulo
the substitutionN1↔pr2uA1u2 with r5L'/2. Besides, the
maximal collapse time of one self-focusing beam is given
tc
max5A2I (0)N1/4H5r2/2AuA1u2r2/421 for beams ini-

tially at rest with no initial divergence. Providedr2uA1u2

.4, an intense beam has totally self-focused att5tc
max and

cannot exist any longer afterwards. Comparing thustc
max with

tfil , it is easily seen thattfil,tc
max, which indicates that the

beam first produces filaments before self-focusing on
whole. Keeping this result in mind, we can then wond
whether two Gaussian beams can coalesce and collaps
the form of one self-focusing lobe before producing fil
ments. The key idea here consists in comparinggmax

21 for two
equal wave packets@Eqs.~5! and~7!# with tc

max(d) @Eq. ~48!#
in the range of powers @Ncrit /(L111L12)] ,N15N2
,(Ncrit /L11) (Ncrit54p), where waves amalgamate und
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the conditiond<dc only. In the context of two identica
beams (L115L22), the time for generatingN5P0 /Pfil fila-
ments from two coupled Gaussian waves is estimated b

tfil5
1

~L111L12!uA1u2 5
pr2

~L111L12!N1
, ~109!

with N15N25pr2uA1u2, whereas their maximum collaps
time reads

tc
max~d!5

r2

2 H 11d2~0!/4r2

~L111L12e
2d2~0!/2r2

!
uA1u2r2

4
21J 1/2

.

~110!

AssuringL1252L11, one observes thattc
max(d), although di-

minishing asd(0)→0, always remains larger thantfil in the
range of powers promoting coalescence

1

3
,

N1L11

4p
,1, ~111!

in such a way that the stage of filamentation breaking p
odically the two waves might not be overcome by their m
tual amalgamation.

To conclude this investigation, we would also like to em
phasize some analogies between copropagating and cou
propagating waves. To this aim, let us focus our attention
a system of two counterpropagating scalar wave envelo
which are described as

i ] tu11¹W 2u11L11uu1u2u11L21uu2u2u150, ~112!

2 i ] tu21¹W 2u21L12uu1u2u21L22uu2u2u250, ~113!

in which u2 evolves along the time variable in the directio
opposite tou1’s. First of all, it is easy to check that both o
ett

s

ev

m

is
i-
-

-
ter-
n
s,

the individual powersNa (a51,2) and the Hamiltonian in-
tegral~27! are still conserved for localized solutions of Eq
~112! and ~113!. Assuming againLab5Lba (a,b51,2),
we can also derive the evolution equation for the partial c
ters of mass, reading

] t
2^xWa~ t !&5

2

Na
LabE uuau2¹W uubu2dxW ~aÞb!,

~114!

which is nothing but the relation~29! previously derived in
the context of copropagating waves. This again yields
conservation laws about the total center of mass locate

the transverse space] t^xW &5PW /N and ] t
2^xW &50W with N^xW &

5N1^xW1&1N2^xW2&. By repeating the principal steps for de
riving the virial identity, it can be verified that the integra

I (t)5Š(xW2^xW &)2
‹ for counterpropagating waves is govern

by a dynamical relation that is identical to Eq.~33! previ-
ously established for copropagating waves. This result sig
fies in particular that the merging dynamics of two count
propagating waves in their transverse diffraction plane
analogous to that taking place for two copropagating puls
A direct consequence of this result is that the formation o
central high-intensity hot spot promoted by the coalesce
of several copropagating waves could in principle be re
forced by the transfer of additional power originating fro
the same number of nonlinear beams propagating in the
posite direction.
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@28# L. Bergé, Phys. Rep.303, 259 ~1998!.
@29# R. T. Glassey, J. Math. Phys.18, 1794~1977!.
@30# M. I. Weinstein, Commun. Math. Phys.87, 567 ~1983!.
@31# M. Desaix, D. Anderson, and M. Lisak, J. Opt. Soc. Am. B8,

2082 ~1991!.
,@32# D. Anderson and M. Lisak, Opt. Lett.11, 174 ~1986!.
@33# N. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn

Zaved. Radiofiz.16, 1020~1973! @ Radiophys. Quantum Elec
tron. 16, 783 ~1975!#.

@34# A. A. Kolokolov, Izv. Vyssh. Uchebn. Zaved. Radiofiz.17,
1332~1974! @Radiophys. Quantum Electron.17, 1016~1976!#.

@35# M. Ohta, Nonlinear Analysis, Theory, Methods & Applica
tions 26, 933 ~1996!.

@36# O. Bang, L. Berge´, and J. Juul Rasmussen~unpublished!.


